Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr 24;8(4):e2663.
doi: 10.1371/journal.pntd.0002663. eCollection 2014 Apr.

Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans

Affiliations

Odorant and gustatory receptors in the tsetse fly Glossina morsitans morsitans

George F O Obiero et al. PLoS Negl Trop Dis. .

Abstract

Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Phylogenetic analyses of ORs or GRs in G. m. morsitans and selected Diptera.
(A) Maximum likelihood (ML) tree for GmmORs and DmelOrs; branches annotated blue is an expanded clade orthologous to DmelOr67d; purple branches is the clade orthologous to DmelOr45a; and green branches indicate the orco cluster. (B) Maximum likelihood tree for GmmGRs and DmelGRs. In both trees, blue labels are D. melanogaster receptors and red labels G. m. morsitans receptors (green labels are An. gambiae CO2 receptors). Phylogenetic cluster inferences were deduced using Maximum Likelihood approach with best fitting Wheelan And Goldman+Freq (WAG+F) model . Evolutionary analyses were conducted using MEGA5 suite .
Figure 2
Figure 2. Glossina chemoreceptor expression abundances by RNA-seq data in RPKM.
(A) Expression abundances of GmmORs. There was no sufficient data to support profiles for GmmOR8, 11, 25, 31, and 39. GmmOR15 had abundant transcriptome data of 90.746% relative to sequence reads that mapped onto GmmORs. (B) Expression abundances of GmmGRs. Expression profiles for GmmGR6, GmmGR11 and GmmGR13 were not detected; GmmGR2 and GmmGR3 accounted for 40% and 36% respectively of the total transcripts considered for GRs.

Similar articles

Cited by

References

    1. Elliott M, Janes NF, Potter C (1978) The Future of Pyrethroids in Insect Control. Annual Review of Entomology 23: 443–469.
    1. Vale GA, Lovemore DF, Flint SCG (1988) Odour-baited targets to control tsetse flies, Glossina spp. (Diptera: Glossinidae) in Zimbabwe. Bull Ent Res 78: 31–49.
    1. Mangwiro TNC, Torr SJ, Cox JR, Holloway M (1999) The efficacy of various pyrethroid insecticides for use on odour-baited targets to control tsetse. Med Vet Ent 13: 315–323. - PubMed
    1. Allsopp R (2001) Options for vector control against trypanosomiasis in Africa. Trends Parasitol 17: 15–19. - PubMed
    1. Gibson G, Torr SJ (1999) Visual and olfactory responses of haematophagous Diptera to host stimuli. Med Vet Entomol 13: 2–23. - PubMed

Publication types

Substances

LinkOut - more resources