Floquet fractional Chern insulators

Phys Rev Lett. 2014 Apr 18;112(15):156801. doi: 10.1103/PhysRevLett.112.156801. Epub 2014 Apr 18.

Abstract

We show theoretically that periodically driven systems with short range Hubbard interactions offer a feasible platform to experimentally realize fractional Chern insulator states. We exemplify the procedure for both the driven honeycomb and the square lattice, where we derive the effective steady state band structure of the driven system by using the Floquet theory and subsequently study the interacting system with exact numerical diagonalization. The fractional Chern insulator state equivalent to the 1/3 Laughlin state appears at 7/12 total filling (1/6 filling of the upper band). The state also features spontaneous ferromagnetism and is thus an example of the spontaneous breaking of a continuous symmetry along with a topological phase transition. We discuss light-driven graphene and shaken optical lattices as possible experimental systems that can realize such a state.