Synthesis and reactivity of 4'-deoxypentenosyl disaccharides

J Org Chem. 2014 Jun 6;79(11):4878-91. doi: 10.1021/jo500449h. Epub 2014 May 12.

Abstract

4-Deoxypentenosides (4-DPs) are versatile synthons for rare or higher-order pyranosides, and they provide an entry for structural diversification at the C5 position. Previous studies have shown that 4-DPs undergo stereocontrolled DMDO oxidation; subsequent epoxide ring-openings with various nucleophiles can proceed with both anti or syn selectivity. Here, we report the synthesis of α- and β-linked 4'-deoxypentenosyl (4'-DP) disaccharides, and we investigate their post-glycosylational C5' additions using the DMDO oxidation/ring-opening sequence. The α-linked 4'-DP disaccharides were synthesized by coupling thiophenyl 4-DP donors with glycosyl acceptors using BSP/Tf2O activation, whereas β-linked 4'-DP disaccharides were generated by the decarboxylative elimination of glucuronyl disaccharides under microwave conditions. Both α- and β-linked 4'-DP disaccharides could be epoxidized with high stereoselectivity using DMDO. In some cases, the α-epoxypentenosides could be successfully converted into terminal l-iduronic acids via the syn addition of 2-furylzinc bromide. These studies support a novel approach to oligosaccharide synthesis, in which the stereochemical configuration of the terminal 4'-DP unit is established at a post-glycosylative stage.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Disaccharides / chemical synthesis*
  • Disaccharides / chemistry
  • Epoxy Compounds / chemistry
  • Glycosylation
  • Oligosaccharides / chemical synthesis*
  • Oligosaccharides / chemistry
  • Oxidation-Reduction
  • Stereoisomerism

Substances

  • Disaccharides
  • Epoxy Compounds
  • Oligosaccharides