Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May 9;9(5):e96477.
doi: 10.1371/journal.pone.0096477. eCollection 2014.

Deeper Penetration of Erythrocytes Into the Endothelial Glycocalyx Is Associated With Impaired Microvascular Perfusion

Collaborators, Affiliations
Free PMC article

Deeper Penetration of Erythrocytes Into the Endothelial Glycocalyx Is Associated With Impaired Microvascular Perfusion

Dae Hyun Lee et al. PLoS One. .
Free PMC article


Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43-2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: -0.034; 95% confidence interval: -0.037 to -0.031). We conclude that microvascular beds with a thick ("healthy") glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin ("risk") glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion.

Conflict of interest statement

Competing Interests: HV is Chief Scientific Officer at GlycoCheck BV (Maastricht, the Netherlands). This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.


Figure 1
Figure 1. Glycocheck algorithm on endothelial PBR determination and microvascular perfusion properties.
A) Red blood cells (RBC) are detected through reflection of light emitting diodes by hemoglobin. Images captured by the sidestream darkfield camera are sent to the computer for quality checks and assessment. The black contrast is the perfused lumen of the vessels. B) In each recording, the software automatically places the vascular segments (green), every 10 µm along the vascular segments (black contrast). C) After the acquisition, for the analysis, the software undergoes several quality check in the first frame of each recording (see text), to select vascular segments with sufficient quality for further analysis. Invalid vascular segments (yellow) are distinguished from the valid vascular segments (green). During the whole recording session of 40 frames, the percentage of time in which a particular valid vascular segment has RBCs present is used to calculate RBC filling percentage. D) Depiction of the concept of glycocalyx thickness by lateral RBC movement is shown here. E) For each vascular segment, the intensity profile is calculated to derive median RBC column width. F) Then, the distribution of RBC column width is used to calculate the perfused diameter, median RBC column width, and subsequently the perfused boundary region (PBR).
Figure 2
Figure 2. Scatterplot between PBR and outcomes of microvascular perfusion.
The perfused boundary region (PBR), a measurement for glycocalyx accessibility to red blood cells (RBC), is associated significantly with spatio-temporal aspects of microvascular perfusion variables: A) RBC filling percentage (percentage of time in which a particular vascular segment is perfused) B) Valid microvascular density. In particular, lower PBR (less accessible glycocalyx, thus a better and thicker glycocalyx) is associated with higher RBC filling percentage (temporal perfusion).
Figure 3
Figure 3. Schematic illustration on relation between glycocalyx accessibility and microvascular perfusion regulation.
A) Healthy state: Intact glycocalyx prevents red blood cells (RBC, red dots) from penetrating into its domain, reflected by a low perfused boundary region (PBR), and nicely aligned elongated RBC. The vessels are well perfused (higher tube hematocrit of microvessel and elongated shape of erythrocyte) resulting in a higher percentage of vessel segments with RBC present at any particular time point (high RBC filling percentage). B) Risk State: Altered composition of glycocalyx (lined dots) allows RBCs to penetrate deeper into the glycocalyx, closer to the anatomical border of lumen (endothelium), reflected by the high PBR. Due to the widening of RBC distribution width and volume, there is more space in between each RBC, as shown by decreased RBC filling percentage (less positive contrast per vascular segment per time point). Also, prolonged state of glycocalyx degradation leads to edematous and non-functioning vessels, leading to shorter vessel density per area of tissue (reduced valid microvascular density in risk PBR), depicted by the loss of bottom vessel.

Similar articles

See all similar articles

Cited by 27 articles

See all "Cited by" articles


    1. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115: 1285–1295. - PubMed
    1. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454: 345–359. - PMC - PubMed
    1. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9: 121–167. - PubMed
    1. Dane MJC, van den Berg BM, Avramut MC, Faas FGA, van der Vlag J, et al. (2013) Glomerular Endothelial Surface Layer Acts as a Barrier against Albumin Filtration. American Journal of Pathology 182: 1532–1540. - PubMed
    1. Rabelink TJ, de Boer HC, van Zonneveld AJ (2010) Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat Rev Nephrol 6: 404–414. - PubMed

Publication types

MeSH terms

Grant support

This work was supported by the Dutch Kidney Foundation [grant number C08.2265 and CP09.03]. The NEO study is supported by participating departments, the Division and the Board of Directors of the Leiden University Medical Center, and by the Leiden University, Research Profile Area ‘Vascular and Regenerative Medicine’. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.