Coronary artery atherectomy reduces plaque shear strains: an endovascular elastography imaging study

Atherosclerosis. 2014 Jul;235(1):140-9. doi: 10.1016/j.atherosclerosis.2014.04.022. Epub 2014 Apr 30.


Mechanical response and properties of the arterial wall can be used to identify the biomechanical instability of plaques and predict their vulnerability to rupture. Shear strain elastography (SSE) is proposed to identify vulnerable plaque features attributed to mechanical structural heterogeneities. The aims of this study were: 1) to report on the potential of SSE to identify atherosclerotic plaques; and 2) to use SSE maps to highlight biomechanical changes in lesion characteristics after directional coronary atherectomy (DCA) interventions. For this purpose, SSE was imaged using in vivo intravascular ultrasound (IVUS) radio-frequency data collected from 12 atherosclerotic patients before and after DCA intervention. Coronary atherosclerotic plaques (pre-DCA) showed high SSE magnitudes with large affected areas. There were good correlations between SSE levels and soft plaque content (i.e., cellular fibrosis, thrombosis and fibrin) (mean |SSE| vs. soft plaque content: r = 0.82, p < 0.01). Significant differences were noticed between SSE images before and after DCA. Stable arteries (post-DCA) exhibited lower values than pre-DCA vessels (e.g., pre-DCA: mean |SSE| = 3.9 ± 0.2% vs. 1.1 ± 0.2% post-DCA, p < 0.001). Furthermore, SSE magnitude was statistically higher in plaques with a high level of inflammation (e.g., mean |SSE| had values of 4.8 ± 0.4% in plaques with high inflammation, whereas it was reduced to 1.8 ± 0.2% with no inflammation, p < 0.01). This study demonstrates the potential of the IVUS-based SSE technique to detect vulnerable plaques in vivo.

Keywords: Human study; Image processing; Intravascular ultrasound; Shear strain imaging; Vascular elastography; Vulnerable coronary atherosclerotic plaques.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Atherectomy*
  • Collagen / chemistry
  • Coronary Vessels / surgery*
  • Elasticity Imaging Techniques*
  • Humans
  • Image Processing, Computer-Assisted
  • Inflammation
  • Least-Squares Analysis
  • Motion
  • Plaque, Atherosclerotic / diagnostic imaging*
  • Plaque, Atherosclerotic / surgery*
  • Rupture
  • Shear Strength
  • Stress, Mechanical
  • Treatment Outcome
  • Ultrasonography, Interventional


  • Collagen