Possible evidence for free precession of a strongly magnetized neutron star in the magnetar 4U 0142+61

Phys Rev Lett. 2014 May 2;112(17):171102. doi: 10.1103/PhysRevLett.112.171102. Epub 2014 Apr 30.

Abstract

Magnetars are a special type of neutron stars, considered to have extreme dipole magnetic fields reaching ∼ 10(11) T. The magnetar 4 U 0142+61, one of the prototypes of this class, was studied in broadband x rays (0.5-70 keV) with the Suzaku observatory. In hard x rays (15-40 keV), its 8.69 sec pulsations suffered slow phase modulations by ± 0.7 sec, with a period of ∼ 15 h. When this effect is interpreted as free precession of the neutron star, the object is inferred to deviate from spherical symmetry by ∼ 1.6 × 10(-4) in its moments of inertia. This deformation, when ascribed to magnetic pressure, suggests a strong toroidal magnetic field, ∼ 10(12) T, residing inside the object. This provides one of the first observational approaches towards toroidal magnetic fields of magnetars.