Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 384 (9938), 189-205

Every Newborn: Progress, Priorities, and Potential Beyond Survival

Collaborators, Affiliations
Review

Every Newborn: Progress, Priorities, and Potential Beyond Survival

Joy E Lawn et al. Lancet.

Erratum in

  • Lancet. 2014 Jul 12;384(9938):132

Abstract

In this Series paper, we review trends since the 2005 Lancet Series on Neonatal Survival to inform acceleration of progress for newborn health post-2015. On the basis of multicountry analyses and multi-stakeholder consultations, we propose national targets for 2035 of no more than 10 stillbirths per 1000 total births, and no more than 10 neonatal deaths per 1000 livebirths, compatible with the under-5 mortality targets of no more than 20 per 1000 livebirths. We also give targets for 2030. Reduction of neonatal mortality has been slower than that for maternal and child (1-59 months) mortality, slowest in the highest burden countries, especially in Africa, and reduction is even slower for stillbirth rates. Birth is the time of highest risk, when more than 40% of maternal deaths (total about 290,000) and stillbirths or neonatal deaths (5·5 million) occur every year. These deaths happen rapidly, needing a rapid response by health-care workers. The 2·9 million annual neonatal deaths worldwide are attributable to three main causes: infections (0·6 million), intrapartum conditions (0·7 million), and preterm birth complications (1·0 million). Boys have a higher biological risk of neonatal death, but girls often have a higher social risk. Small size at birth--due to preterm birth or small-for-gestational-age (SGA), or both--is the biggest risk factor for more than 80% of neonatal deaths and increases risk of post-neonatal mortality, growth failure, and adult-onset non-communicable diseases. South Asia has the highest SGA rates and sub-Saharan Africa has the highest preterm birth rates. Babies who are term SGA low birthweight (10·4 million in these regions) are at risk of stunting and adult-onset metabolic conditions. 15 million preterm births, especially of those younger than 32 weeks' gestation, are at the highest risk of neonatal death, with ongoing post-neonatal mortality risk, and important risk of long-term neurodevelopmental impairment, stunting, and non-communicable conditions. 4 million neonates annually have other life-threatening or disabling conditions including intrapartum-related brain injury, severe bacterial infections, or pathological jaundice. Half of the world's newborn babies do not get a birth certificate, and most neonatal deaths and almost all stillbirths have no death certificate. To count deaths is crucial to change them. Failure to improve birth outcomes by 2035 will result in an estimated 116 million deaths, 99 million survivors with disability or lost development potential, and millions of adults at increased risk of non-communicable diseases after low birthweight. In the post-2015 era, improvements in child survival, development, and human capital depend on ensuring a healthy start for every newborn baby--the citizens and workforce of the future.

Similar articles

  • Population-based rates, timing, and causes of maternal deaths, stillbirths, and neonatal deaths in south Asia and sub-Saharan Africa: a multi-country prospective cohort study.
    Alliance for Maternal and Newborn Health Improvement (AMANHI) mortality study group. Alliance for Maternal and Newborn Health Improvement (AMANHI) mortality study group. Lancet Glob Health. 2018 Dec;6(12):e1297-e1308. doi: 10.1016/S2214-109X(18)30385-1. Epub 2018 Oct 22. Lancet Glob Health. 2018. PMID: 30361107 Free PMC article.
  • Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O'Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De León FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Lozano R, et al. Lancet. 2012 Dec 15;380(9859):2095-128. doi: 10.1016/S0140-6736(12)61728-0. Lancet. 2012. PMID: 23245604
  • Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015.
    GBD 2015 Child Mortality Collaborators. GBD 2015 Child Mortality Collaborators. Lancet. 2016 Oct 8;388(10053):1725-1774. doi: 10.1016/S0140-6736(16)31575-6. Lancet. 2016. PMID: 27733285 Free PMC article.
  • Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost?
    Bhutta ZA, Das JK, Bahl R, Lawn JE, Salam RA, Paul VK, Sankar MJ, Blencowe H, Rizvi A, Chou VB, Walker N; Lancet Newborn Interventions Review Group; Lancet Every Newborn Study Group. Bhutta ZA, et al. Lancet. 2014 Jul 26;384(9940):347-70. doi: 10.1016/S0140-6736(14)60792-3. Epub 2014 May 19. Lancet. 2014. PMID: 24853604 Review.
  • Newborn survival in low resource settings--are we delivering?
    Lawn JE, Kerber K, Enweronu-Laryea C, Massee Bateman O. Lawn JE, et al. BJOG. 2009 Oct;116 Suppl 1:49-59. doi: 10.1111/j.1471-0528.2009.02328.x. BJOG. 2009. PMID: 19740173 Review.
See all similar articles

Cited by 391 articles

See all "Cited by" articles

Publication types

MeSH terms

Feedback