Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus
- PMID: 24853639
- PMCID: PMC4036114
- DOI: 10.1038/ncomms4956
Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus
Abstract
Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype-phenotype mapping.
Figures
Similar articles
-
Staphylococcus aureus mobile genetic elements.Mol Biol Rep. 2014 Aug;41(8):5005-18. doi: 10.1007/s11033-014-3367-3. Epub 2014 Apr 13. Mol Biol Rep. 2014. PMID: 24728610 Review.
-
Transposase-Mediated Excision, Conjugative Transfer, and Diversity of ICE6013 Elements in Staphylococcus aureus.J Bacteriol. 2017 Mar 28;199(8):e00629-16. doi: 10.1128/JB.00629-16. Print 2017 Apr 15. J Bacteriol. 2017. PMID: 28138100 Free PMC article.
-
The chromosomal organization of horizontal gene transfer in bacteria.Nat Commun. 2017 Oct 10;8(1):841. doi: 10.1038/s41467-017-00808-w. Nat Commun. 2017. PMID: 29018197 Free PMC article.
-
Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element.Sci China Life Sci. 2013 Mar;56(3):268-74. doi: 10.1007/s11427-013-4453-9. Epub 2013 Mar 23. Sci China Life Sci. 2013. PMID: 23526394
-
Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC.Drug Resist Updat. 2003 Feb;6(1):41-52. doi: 10.1016/s1368-7646(03)00003-7. Drug Resist Updat. 2003. PMID: 12654286 Review.
Cited by
-
Genomic analysis of Ralstonia pickettii reveals the genetic features for potential pathogenicity and adaptive evolution in drinking water.Front Microbiol. 2024 Feb 2;14:1272636. doi: 10.3389/fmicb.2023.1272636. eCollection 2023. Front Microbiol. 2024. PMID: 38370577 Free PMC article.
-
Within-host genomic evolution of methicillin-resistant Staphylococcus aureus in long-term carriers.Appl Microbiol Biotechnol. 2024 Dec;108(1):95. doi: 10.1007/s00253-023-12932-3. Epub 2024 Jan 11. Appl Microbiol Biotechnol. 2024. PMID: 38212970 Free PMC article.
-
Epidemiological characterization of clinical isolates of meticillin resistant Staphylococcus aureus through multilocus sequence typing and staphylococcal cassette chromosome mec typing in Northwest Iran.Mol Biol Rep. 2024 Jan 2;51(1):58. doi: 10.1007/s11033-023-08951-y. Mol Biol Rep. 2024. PMID: 38165438
-
Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex.Microbiol Spectr. 2023 Sep 15;11(5):e0134223. doi: 10.1128/spectrum.01342-23. Online ahead of print. Microbiol Spectr. 2023. PMID: 37712674 Free PMC article.
-
Atopic dermatitis-derived Staphylococcus aureus strains: what makes them special in the interplay with the host.Front Cell Infect Microbiol. 2023 Jun 14;13:1194254. doi: 10.3389/fcimb.2023.1194254. eCollection 2023. Front Cell Infect Microbiol. 2023. PMID: 37389215 Free PMC article.
References
-
- Ochman H., Lawrence J. G. & Groisman E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000). - PubMed
-
- Wright G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186 (2007). - PubMed
-
- MacLean R. C., Hall A. R., Perron G. G. & Buckling A. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat. Rev. Genet. 11, 405–414 (2010). - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
