Electrically injected photon-pair source at room temperature

Phys Rev Lett. 2014 May 9;112(18):183901. doi: 10.1103/PhysRevLett.112.183901. Epub 2014 May 7.

Abstract

One of the main challenges for future quantum information technologies is the miniaturization and integration of high performance components in a single chip. In this context, electrically driven sources of nonclassical states of light have a clear advantage over optically driven ones. Here we demonstrate the first electrically driven semiconductor source of photon pairs working at room temperature and telecom wavelengths. The device is based on type-II intracavity spontaneous parametric down-conversion in an AlGaAs laser diode and generates pairs at 1.57 μm. Time-correlation measurements of the emitted pairs give an internal generation efficiency of 7×10(-11) pairs/injected electron. The capability of our platform to support the generation, manipulation, and detection of photons opens the way to the demonstration of massively parallel systems for complex quantum operations.