Taking on challenging targets: making MYC druggable

Am Soc Clin Oncol Educ Book. 2014;e497-502. doi: 10.14694/EdBook_AM.2014.34.e497.

Abstract

The transcription factor proto-oncogene c-MYC (hereafter MYC) was first identified more than 3 decades ago and has since been found deregulated in a wide variety of the most aggressive human malignancies. As a pleiotropic transcription factor, MYC directly or indirectly controls expression of hundreds of coding and noncoding genes, which affect cell cycle entry, proliferation, differentiation, metabolism, and death/survival decisions of normal and cancer cells. Tumors with elevated MYC expression often exhibit highly proliferative, aggressive phenotypes, and elevated MYC expression has been correlated with diminished disease-free survival for a variety of human cancers. The use of MYC overexpression or MYC-dependent transcriptional gene signatures as clinical biomarkers is currently being investigated. Furthermore, preclinical animal and cell-based model systems have been extensively utilized in an effort to uncover the mechanisms of MYC-dependent tumorigenesis and tumor maintenance. Despite our ever-growing understanding of MYC biology, currently no targeted therapeutic strategy is clinically available to treat tumors that have acquired elevated MYC expression. This article summarizes the progresses being made to discover and implement new therapies to kill MYC over-expressing tumors-a target that was once deemed undruggable.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review
  • Video-Audio Media

MeSH terms

  • Animals
  • Antineoplastic Agents / adverse effects
  • Antineoplastic Agents / therapeutic use*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Genetic Predisposition to Disease
  • Humans
  • Molecular Targeted Therapy* / adverse effects
  • Mutation
  • Neoplasms / drug therapy*
  • Neoplasms / genetics
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Phenotype
  • Proto-Oncogene Proteins c-myc / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism
  • Signal Transduction / drug effects
  • Transcription, Genetic / drug effects
  • Treatment Outcome

Substances

  • Antineoplastic Agents
  • Proto-Oncogene Proteins c-myc