Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jul;19(5):625-35.
doi: 10.1111/resp.12312. Epub 2014 May 29.

Introduction to propensity scores

Affiliations
Review

Introduction to propensity scores

Elizabeth J Williamson et al. Respirology. 2014 Jul.

Abstract

Although randomization provides a gold-standard method of assessing causal relationships, it is not always possible to randomly allocate exposures. Where exposures are not randomized, estimating exposure effects is complicated by confounding. The traditional approach to dealing with confounding is to adjust for measured confounding variables within a regression model for the outcome variable. An alternative approach--propensity scoring--instead fits a regression model to the exposure variable. For a binary exposure, the propensity score is the probability of being exposed, given the measured confounders. These scores can be estimated from the data, for example by fitting a logistic regression model for the exposure including the confounders as explanatory variables and obtaining the estimated propensity scores from the predicted exposure probabilities from this model. These estimated propensity scores can then be used in various ways-matching, stratification, covariate-adjustment or inverse-probability weighting-to obtain estimates of the exposure effect. In this paper, we provide an introduction to propensity score methodology and review its use within respiratory health research. We illustrate propensity score methods by investigating the research question: 'Does personal smoking affect the risk of subsequent asthma?' using data taken from the Tasmanian Longitudinal Health Study.

Keywords: causal inference; confounding; environmental and occupational health and epidemiology; observational studies; statistics.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources