Performance assessment of a preclinical PET scanner with pinhole collimation by comparison to a coincidence-based small-animal PET scanner

J Nucl Med. 2014 Aug;55(8):1368-74. doi: 10.2967/jnumed.113.136663. Epub 2014 Jun 5.


PET imaging of rodents is increasingly used in preclinical research, but its utility is limited by spatial resolution and signal-to-noise ratio of the images. A recently developed preclinical PET system uses a clustered-pinhole collimator, enabling high-resolution, simultaneous imaging of PET and SPECT tracers. Pinhole collimation strongly departs from traditional electronic collimation achieved via coincidence detection in PET. We investigated the potential of such a design by direct comparison to a traditional PET scanner.

Methods: Two small-animal PET scanners, 1 with electronic collimation and 1 with physical collimation using clustered pinholes, were used to acquire data from Jaszczak (hot rod) and uniform phantoms. Mouse brain imaging using (18)F-FDG PET was performed on each system and compared with quantitative ex vivo autoradiography as a gold standard. Bone imaging using (18)F-NaF allowed comparison of imaging in the mouse body. Images were visually and quantitatively compared using measures of contrast and noise.

Results: Pinhole PET resolved the smallest rods (diameter, 0.85 mm) in the Jaszczak phantom, whereas the coincidence system resolved 1.1-mm-diameter rods. Contrast-to-noise ratios were better for pinhole PET when imaging small rods (<1.1 mm) for a wide range of activity levels, but this reversed for larger rods. Image uniformity on the coincidence system (<3%) was superior to that on the pinhole system (5%). The high (18)F-FDG uptake in the striatum of the mouse brain was fully resolved using the pinhole system, with contrast to nearby regions equaling that from autoradiography; a lower contrast was found using the coincidence PET system. For short-duration images (low-count), the coincidence system was superior.

Conclusion: In the cases for which small regions need to be resolved in scans with reasonably high activity or reasonably long scan times, a first-generation clustered-pinhole system can provide image quality in terms of resolution, contrast, and the contrast-to-noise ratio superior to a traditional PET system.

Keywords: VECTor; pinhole PET; preclinical PET; small-animal PET.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain / diagnostic imaging
  • Mice
  • Phantoms, Imaging
  • Positron-Emission Tomography / instrumentation*
  • Signal-To-Noise Ratio