Percutaneous closure of large VSD using a home-made fenestrated atrial septal occluder in 18-year-old with pulmonary hypertension

BMC Cardiovasc Disord. 2014 Jun 9:14:74. doi: 10.1186/1471-2261-14-74.

Abstract

Background: Hemodynamically significant muscular ventricular septal defects in children after the infantile period are a rare occurrence and ideal for transcatheter closure. In cases of severe concomitant pulmonary hypertension, it may be necessary to fenestrate the device. In this report, we present an 18-year old patient with a large mid-trabecular ventricular septal defect and severe pulmonary hypertension that underwent percutaneous closure of the defect with a home-made fenestrated atrial septal occluder.

Case presentation: An 18-year-old female patient referred to us with complaints of dyspnea (NYHA score of 2-3). Physical examination revealed an apical rumble and a harsh second heart sound. Echocardiographic examination revealed a large mid-trabecular ventricular septal defect with bidirectional shunt and the widest diameter measuring 22 mm on 2D echocardiography. Left and right heart cavities were enlarged. Before and after the vasoreactivity test performed during cardiac catheterization, average aortic pressure was 65 → 86 mmHg, average pulmonary artery pressure: 58 → 73 mmHg, Qp/Qs: 1.6 → 3.2, PVR: 4.6 → 4.3 Wood/U/m2 and PVR/SVR: 0.5 → 0.2. On left-ventricular angiocardiogram, the largest end-diastolic defect diameter was 21 mm. The closure procedure was performed with transthoracic echocardiographic guidance, using a 24 mm Cera septal occluder and a 14 F sheath dilator to make a 4.5-5 mm opening. Measured immediately after the procedure and during cardiac catheterization one month later, average aortic pressure was 75 → 75 mmHg, average pulmonary artery pressure: 66 → 30 mmHg, Qp/Qs 1.5 → 1.4, PVR: 4.4 → 2.9 Wood/U/m2 and PVR/SVR: 0.4 → 0.2. Transthoracic echocardiographic examination performed 24 hours after the procedure showed a max 35-40 mmHg gradient between the left and right ventricles through the fenestration. After the procedure, we observed sporadic early ventricular systoles and a nodal rhythm disorder that started after approximately 12 hours and spontaneously reverted to normal 9 days later.

Conclusion: In patients with large ventricular septal defects, large atrial septal occluders may be used. In cases with risk of pulmonary vascular disease, a safer option would be to close the defect using a manually fenestrated device.

Publication types

  • Case Reports

MeSH terms

  • Adolescent
  • Cardiac Catheterization / instrumentation*
  • Echocardiography
  • Electrocardiography
  • Female
  • Heart Septal Defects, Ventricular / complications*
  • Heart Septal Defects, Ventricular / diagnosis
  • Heart Septal Defects, Ventricular / physiopathology
  • Heart Septal Defects, Ventricular / therapy*
  • Hemodynamics
  • Humans
  • Hypertension, Pulmonary / complications*
  • Hypertension, Pulmonary / diagnosis
  • Hypertension, Pulmonary / physiopathology
  • Prosthesis Design*
  • Septal Occluder Device*
  • Severity of Illness Index
  • Treatment Outcome