Design of a GaP/Si composite waveguide for CW terahertz wave generation via difference frequency mixing

Appl Opt. 2014 Jun 10;53(17):3587-92. doi: 10.1364/AO.53.003587.

Abstract

We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×10(-4) W(-1). This value is larger than previously obtained with the bulk GaP crystal: 0.5×10(-9) W(-1) [J. Lightwave Technol.27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.