Activity and architecture of pyroglutamate-modified amyloid-β (AβpE3-42) pores

J Phys Chem B. 2014 Jul 3;118(26):7335-44. doi: 10.1021/jp5040954. Epub 2014 Jun 24.

Abstract

Among the family of Aβ peptides, pyroglutamate-modified Aβ (AβpE) peptides are particularly associated with cytotoxicity in Alzheimer's disease (AD). They represent the dominant fraction of Aβ oligomers in the brains of AD patients, but their accumulation in the brains of elderly individuals with normal cognition is significantly lower. Accumulation of AβpE plaques precedes the formation of plaques of full-length Aβ (Aβ1-40/42). Most of these properties appear to be associated with the higher hydrophobicity of AβpE as well as an increased resistance to enzymatic degradation. However, the important question of whether AβpE peptides induce pore activity in lipid membranes and their potential toxicity compared with other Aβ pores is still open. Here we examine the activity of AβpE pores in anionic membranes using planar bilayer electrical recording and provide their structures using molecular dynamics simulations. We find that AβpE pores spontaneously induce ionic current across the membrane and have some similar properties to the other previously studied pores of the Aβ family. However, there are also some significant differences. The onset of AβpE3-42 pore activity is generally delayed compared with Aβ1-42 pores. However, once formed, AβpE3-42 pores produce increased ion permeability of the membrane, as indicated by a greater occurrence of higher conductance electrical events. Structurally, the lactam ring of AβpE peptides induces a change in the conformation of the N-terminal strands of the AβpE3-42 pores. While the N-termini of wild-type Aβ1-42 peptides normally reside in the bulk water region, the N-termini of AβpE3-42 peptides tend to reside in the hydrophobic lipid core. These studies provide a first step to an understanding of the enhanced toxicity attributed to AβpE peptides.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyloid beta-Peptides / chemistry*
  • Amyloid beta-Peptides / metabolism
  • Hydrophobic and Hydrophilic Interactions
  • Lipid Bilayers / chemistry
  • Lipid Bilayers / metabolism
  • Molecular Dynamics Simulation
  • Peptide Fragments / chemistry*
  • Peptide Fragments / metabolism
  • Pyrrolidonecarboxylic Acid / chemistry*
  • Zinc / chemistry

Substances

  • Amyloid beta-Peptides
  • Lipid Bilayers
  • Peptide Fragments
  • amyloid beta-protein (1-42)
  • Zinc
  • Pyrrolidonecarboxylic Acid