Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes
- PMID: 24927540
- PMCID: PMC4078802
- DOI: 10.1073/pnas.1401734111
Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes
Abstract
Nonribosomal peptides and polyketides are a diverse group of natural products with complex chemical structures and enormous pharmaceutical potential. They are synthesized on modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzyme complexes by a conserved thiotemplate mechanism. Here, we report the widespread occurrence of NRPS and PKS genetic machinery across the three domains of life with the discovery of 3,339 gene clusters from 991 organisms, by examining a total of 2,699 genomes. These gene clusters display extraordinarily diverse organizations, and a total of 1,147 hybrid NRPS/PKS clusters were found. Surprisingly, 10% of bacterial gene clusters lacked modular organization, and instead catalytic domains were mostly encoded as separate proteins. The finding of common occurrence of nonmodular NRPS differs substantially from the current classification. Sequence analysis indicates that the evolution of NRPS machineries was driven by a combination of common descent and horizontal gene transfer. We identified related siderophore NRPS gene clusters that encoded modular and nonmodular NRPS enzymes organized in a gradient. A higher frequency of the NRPS and PKS gene clusters was detected from bacteria compared with archaea or eukarya. They commonly occurred in the phyla of Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria in bacteria and the phylum of Ascomycota in fungi. The majority of these NRPS and PKS gene clusters have unknown end products highlighting the power of genome mining in identifying novel genetic machinery for the biosynthesis of secondary metabolites.
Keywords: bioactive compound; biosynthetic gene cluster; data mining; distribution.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Comment in
-
Comments on the distribution and phylogeny of type I polyketide synthases and nonribosomal peptide synthetases in eukaryotes.Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3946. doi: 10.1073/pnas.1412766111. Epub 2014 Sep 2. Proc Natl Acad Sci U S A. 2014. PMID: 25197098 Free PMC article. No abstract available.
-
Reply to Sasso et al.: Distribution and phylogeny of nonribosomal peptide and polyketide biosynthetic pathways in eukaryotes.Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):E3947. doi: 10.1073/pnas.1413343111. Epub 2014 Sep 2. Proc Natl Acad Sci U S A. 2014. PMID: 25199204 Free PMC article. No abstract available.
Similar articles
-
Genome-based analysis of non-ribosomal peptide synthetase and type-I polyketide synthase gene clusters in all type strains of the genus Herbidospora.BMC Res Notes. 2015 Oct 9;8:548. doi: 10.1186/s13104-015-1526-9. BMC Res Notes. 2015. PMID: 26452464 Free PMC article.
-
Genomic and gene expression evidence of nonribosomal peptide and polyketide production among ruminal bacteria: a potential role in niche colonization?FEMS Microbiol Ecol. 2020 Feb 1;96(2):fiz198. doi: 10.1093/femsec/fiz198. FEMS Microbiol Ecol. 2020. PMID: 31825517
-
Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters in the genus Acrocarpospora.J Gen Appl Microbiol. 2021 Feb 26;66(6):315-322. doi: 10.2323/jgam.2020.01.001. Epub 2020 Aug 14. J Gen Appl Microbiol. 2021. PMID: 32801283
-
Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes.Mar Drugs. 2016 Apr 16;14(4):80. doi: 10.3390/md14040080. Mar Drugs. 2016. PMID: 27092515 Free PMC article. Review.
-
Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product.J Biosci. 2017 Mar;42(1):175-187. doi: 10.1007/s12038-017-9663-z. J Biosci. 2017. PMID: 28229977 Review.
Cited by
-
Cyanopeptolins and Anabaenopeptins Are the Dominant Cyanopeptides from Planktothrix Strains Collected in Canadian Lakes.Toxins (Basel). 2024 Feb 17;16(2):110. doi: 10.3390/toxins16020110. Toxins (Basel). 2024. PMID: 38393188 Free PMC article.
-
Global characterization of biosynthetic gene clusters in non-model eukaryotes using domain architectures.Sci Rep. 2024 Jan 17;14(1):1534. doi: 10.1038/s41598-023-50095-3. Sci Rep. 2024. PMID: 38233413 Free PMC article.
-
SOCfinder: a genomic tool for identifying social genes in bacteria.Microb Genom. 2023 Dec;9(12):001171. doi: 10.1099/mgen.0.001171. Microb Genom. 2023. PMID: 38117204 Free PMC article.
-
A niche-derived non-ribosomal peptide triggers planarian sexual development.bioRxiv [Preprint]. 2023 Dec 6:2023.12.06.570471. doi: 10.1101/2023.12.06.570471. bioRxiv. 2023. PMID: 38106172 Free PMC article. Preprint.
-
Occurrence of D-amino acids in natural products.Nat Prod Bioprospect. 2023 Nov 7;13(1):47. doi: 10.1007/s13659-023-00412-0. Nat Prod Bioprospect. 2023. PMID: 37932633 Free PMC article. Review.
References
-
- Cane DE, Walsh CT, Khosla C. Harnessing the biosynthetic code: Combinations, permutations, and mutations. Science. 1998;282(5386):63–68. - PubMed
-
- Finking R, Marahiel MA. Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol. 2004;58:453–488. - PubMed
-
- Weissman KJ, Leadlay PF. Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol. 2005;3(12):925–936. - PubMed
-
- Kopp F, Marahiel MA. Where chemistry meets biology: the chemoenzymatic synthesis of nonribosomal peptides and polyketides. Curr Opin Biotechnol. 2007;18(6):513–520. - PubMed
-
- Walsh CT. The chemical versatility of natural-product assembly lines. Acc Chem Res. 2008;41(1):4–10. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
