Effects of ethyl pyruvate on cardiac function recovery and apoptosis reduction after global cold ischemia and reperfusion

Exp Ther Med. 2014 May;7(5):1197-1202. doi: 10.3892/etm.2014.1581. Epub 2014 Feb 24.

Abstract

The present study used an in vitro model of cold cardioplegia in isolated working rat hearts to evaluate the possible role of ethyl pyruvate (EP) in promoting cardiac function and preventing apoptosis. Two groups of rats were evaluated; the EP (2 mM EP; n=8) and control (n=8) groups. Isolated rat hearts were perfused with Krebs-Henseleit buffer (KHB) for 30 min, arrested with cardioplegic solution and stored for 4 h in B21 solution at 4°C. The hearts were reperfused with KHB for 45 min. EP was added to the cardioplegic and storage solutions and also to KHB for reperfusion. Cardiac parameters of the heart rate, including left ventricular systolic pressure, left ventricular end-diastolic pressure, left ventricular developed pressure and maximal rise rate of the left ventricular pressure, were monitored. In addition, coronary flow, adenosine triphosphate (ATP) levels and malondialdehyde (MDA) content were recorded and apoptotic cell determination was detected. The functional parameters in the EP group were significantly higher compared with those in the control group during the reperfusion period (P<0.05). In addition, ATP levels were higher in the EP group than in the control group and the content of MDA was lower in the EP group than in the control group. A concentration of 2 mM EP significantly reduced the number of apoptotic cells in the EP group compared with that of the control group (P<0.05). Therefore, EP significantly preserved cardiac function, enhanced tissue ATP levels, attenuated myocardial oxidative injury and markedly reduced apoptosis following myocardial ischemia in an in vitro model of 4 h of cold cardioplegia and reperfusion.

Keywords: apoptosis; ethyl pyruvate; heart; rat; transplantation.