Effects of short-term energy deficit on muscle protein breakdown and intramuscular proteolysis in normal-weight young adults

Appl Physiol Nutr Metab. 2014 Aug;39(8):960-8. doi: 10.1139/apnm-2013-0433. Epub 2014 Jun 19.


The effects of short-term energy deficit (ED) on direct measures of muscle proteolysis and the intracellular mechanisms by which muscle proteins are degraded at rest and following aerobic exercise are not well described. This study evaluated the effects of a short-term diet-induced ED, on muscle fractional breakdown rate (FBR), intramuscular 26S proteasome activity, caspase-3 activation, and PSMA2 and MAFbx expression at rest, in the postabsorptive state, and following a single bout of moderate aerobic exercise (45 min at 65% peak oxygen uptake). Six men and 4 women participated in two 10-day diet interventions: weight maintenance (WM) followed by ED (80% estimated energy requirements). Dietary protein (1.5 g·kg(-1)·day(-1)) intake was constant for WM and ED. Mixed muscle FBR, proteasome activity, and intracellular proteolytic factor expression were measured using stable isotope methodology, fluorescent enzyme activity assays, and Western blotting, respectively. Overall, FBR and caspase-3 activation increased 60% and 11%, respectively, in response to ED (P < 0.05), but were not influenced by exercise. During ED, 26S proteasome α-subunit PSMA2 expression was 25% higher (P < 0.05) after exercise compared with rest. Exercise did not influence PSMA2 expression during WM, and MAFbx expression and 26S proteasome activity were not affected by ED or exercise. These data illustrate the effects of short-term, moderate ED on muscle protein degradation. In the context of skeletal muscle integrity during weight loss interventions, this work demonstrates a need for further investigations aimed at mitigating muscle loss associated with energy deficit imposed for intentional reduction of total body weight.

Keywords: aerobic exercise; caspase-3; déficit énergétique; energy deficit; exercice aérobie; fractional breakdown rate; perte de poids; proteolysis; protéolyse; taux de dégradation fractionnelle; ubiquitin; ubiquitine; weight loss.

MeSH terms

  • Body Weight
  • Energy Intake*
  • Female
  • Humans
  • Male
  • Muscle Proteins / metabolism*
  • Muscle, Skeletal / metabolism*
  • Proteolysis*
  • Reference Values
  • Time Factors
  • Young Adult


  • Muscle Proteins