Protein-protein interactions are critical components of almost every cellular process. The bimolecular fluorescence complementation (BiFC) method has been used to detect protein-protein interactions in both living cells and cell-free systems. The BiFC method is based on the principle that a fluorescent protein is reassembled from its two complementary non-fluorescent fragments when an interaction occurs between two proteins, each one fused to each fragment. In vivo and in vitro BiFC assays, which use a new pair of split Venus fragments composed of VN210 (amino acids 1-210) and VC210 (amino acids 210-238), are useful tools to detect and quantify various protein-protein interactions (including the cofilin-actin and Ras-Raf interactions) with high specificity and low background fluorescence. Moreover, these assays can be applied to screen small-molecule inhibitors of protein-protein interactions.