Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10371-6. doi: 10.1073/pnas.1404657111. Epub 2014 Jun 23.

Abstract

The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets. Instead, we report that these genes comprise transient TF-target interactions most relevant to rapid signal transduction. We temporally perturbed a master TF (Basic Leucine Zipper 1, bZIP1) and the nitrogen (N) signal it transduces and integrated TF regulation and binding data from the same cell samples. Our enabling approach could identify primary TF targets based solely on gene regulation, in the absence of TF binding. We uncovered three classes of primary TF targets: (i) poised (TF-bound but not TF-regulated), (ii) stable (TF-bound and TF-regulated), and (iii) transient (TF-regulated but not TF-bound), the largest class. Unexpectedly, the transient bZIP1 targets are uniquely relevant to rapid N signaling in planta, enriched in dynamic N-responsive genes, and regulated by TF and N signal interactions. These transient targets include early N responders nitrate transporter 2.1 and NIN-like protein 3, bound by bZIP1 at 1-5 min, but not at later time points following TF perturbation. Moreover, promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1. This transient mode of TF action supports a classic, but forgotten, "hit-and-run" transcription model, which enables a "catalyst TF" to activate a large set of targets within minutes of signal perturbation.

Keywords: gene networks; nitrogen signaling; systems biology; transcription regulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anion Transport Proteins / biosynthesis
  • Anion Transport Proteins / genetics
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / biosynthesis
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Basic-Leucine Zipper Transcription Factors / genetics
  • Basic-Leucine Zipper Transcription Factors / metabolism*
  • Gene Expression Regulation, Plant / physiology*
  • Nitrogen / metabolism*
  • Plant Proteins / biosynthesis
  • Plant Proteins / genetics
  • Response Elements / physiology*
  • Signal Transduction / physiology*
  • Time Factors

Substances

  • Anion Transport Proteins
  • Arabidopsis Proteins
  • Basic-Leucine Zipper Transcription Factors
  • NRT1.1 protein, Arabidopsis
  • NRT2 protein, Arabidopsis
  • Plant Proteins
  • bZIP1 protein, Arabidopsis
  • Nitrogen

Associated data

  • GEO/GSE54049
  • SRA/SRX425878