Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain
- PMID: 24960360
- PMCID: PMC4068981
- DOI: 10.1371/journal.pbio.1001893
Selection of motor programs for suppressing food intake and inducing locomotion in the Drosophila brain
Erratum in
- PLoS Biol. 2014 Nov;12(11):e1002016
Abstract
Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Comment on
-
Stop eating and start moving: one switch does both.PLoS Biol. 2014 Jun 24;12(6):e1001894. doi: 10.1371/journal.pbio.1001894. eCollection 2014 Jun. PLoS Biol. 2014. PMID: 24960466 Free PMC article. No abstract available.
Similar articles
-
Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin-expressing neurons.J Comp Neurol. 2007 Jun 10;502(5):848-56. doi: 10.1002/cne.21342. J Comp Neurol. 2007. PMID: 17436293
-
Synaptic transmission parallels neuromodulation in a central food-intake circuit.Elife. 2016 Nov 15;5:e16799. doi: 10.7554/eLife.16799. Elife. 2016. PMID: 27845623 Free PMC article.
-
Coordination and modulation of locomotion pattern generators in Drosophila larvae: effects of altered biogenic amine levels by the tyramine beta hydroxlyase mutation.J Neurosci. 2006 Feb 1;26(5):1486-98. doi: 10.1523/JNEUROSCI.4749-05.2006. J Neurosci. 2006. PMID: 16452672 Free PMC article.
-
Premotor neurons in the feeding system of Aplysia californica.J Neurobiol. 1989 Jul;20(5):497-512. doi: 10.1002/neu.480200516. J Neurobiol. 1989. PMID: 2664083 Review.
-
The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods.Prog Neurobiol. 2001 Mar;63(4):383-408. doi: 10.1016/s0301-0082(00)00049-6. Prog Neurobiol. 2001. PMID: 11163684 Review.
Cited by
-
Neural basis of hunger-driven behaviour in Drosophila.Open Biol. 2019 Mar 29;9(3):180259. doi: 10.1098/rsob.180259. Open Biol. 2019. PMID: 30914005 Free PMC article. Review.
-
Neuromodulatory circuit effects on Drosophila feeding behaviour and metabolism.Sci Rep. 2017 Aug 18;7(1):8839. doi: 10.1038/s41598-017-08466-0. Sci Rep. 2017. PMID: 28821829 Free PMC article.
-
CCHamide-2 Is an Orexigenic Brain-Gut Peptide in Drosophila.PLoS One. 2015 Jul 13;10(7):e0133017. doi: 10.1371/journal.pone.0133017. eCollection 2015. PLoS One. 2015. PMID: 26168160 Free PMC article.
-
Central relay of bitter taste to the protocerebrum by peptidergic interneurons in the Drosophila brain.Nat Commun. 2016 Sep 13;7:12796. doi: 10.1038/ncomms12796. Nat Commun. 2016. PMID: 27619503 Free PMC article.
-
Effects of unstable β-PheRS on food avoidance, growth, and development are suppressed by the appetite hormone CCHa2.Fly (Austin). 2024 Dec;18(1):2308737. doi: 10.1080/19336934.2024.2308737. Epub 2024 Feb 19. Fly (Austin). 2024. PMID: 38374657 Free PMC article.
References
-
- Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA (2005) Mechanisms for selection of basic motor programs—roles for the striatum and pallidum. Trends Neurosci 28: 364–370. - PubMed
-
- Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–498. - PubMed
-
- Harris-Warwick RM, Marder E, Selverston AI, Moulins M (1992) Dynamic biological networks: the stomatogastric nervous system. Cambridge (Massachusetts): The MIT Press.
-
- Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4: 573–586. - PubMed
-
- Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52: 751–766. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
