Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method

Anim Genet. 2014 Oct;45(5):674-84. doi: 10.1111/age.12184. Epub 2014 Jun 24.

Abstract

Next-generation sequencing RNA-Seq technology is a powerful tool that creates new possibilities for whole-transcriptome analysis. In our study, the RNA-Seq method was applied to analyze global changes in transcriptome from muscle tissue (m. semimembranosus) in two pig breeds (Pietrain and Polish Landrace, PL). The breeds differ in terms of muscularity, growth rate and reproduction traits. Using three different approaches (deseq, cufflinks and edger) and taking into account the most restrictive criteria, 35 genes differentially expressed between Pietrain and PL pigs were identified. In both breeds, the most abundant were transcripts encoding ribosomal and cytoskeletal proteins (TPM3, TCAP, TMOD4, TPM2, TNNC1) and calcium-binding proteins involved in muscle contraction, calcium-mediated signaling or cation transport (CASQ1, MLC2V, SLC25A4, MYL3). In PL pigs, we identified up-regulation of several genes that play crucial roles in reproduction: female gamete generation (BDP1, PTPN21, USP9X), fertilization (EGFR) and embryonic development (CPEB4). In the Pietrain breed, only seven genes were over-expressed (CISH, SPP1, TUBA8, ATP6V1C2, IGKC, predicted LOC100510960 and LOC100626400), and they play important roles in, for example, negative regulation of apoptosis, immune response, cell-cell signaling, cell growth and migration as well as the metabolic process. The functions of the majority of selected genes were consistent with phenotypic variation in investigated breeds; thus, we proposed a new panel of candidate genes that can be associated with economically important pig traits.

Keywords: Landrace; Pietrain; candidate gene; gene expression; muscle tissue.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breeding
  • Female
  • Gene Expression
  • Gene Library
  • Phenotype
  • Sequence Analysis, RNA*
  • Sus scrofa / genetics*
  • Transcriptome*