DNA origami as an in vivo drug delivery vehicle for cancer therapy

ACS Nano. 2014 Jul 22;8(7):6633-43. doi: 10.1021/nn502058j. Epub 2014 Jun 30.


Many chemotherapeutics used for cancer treatments encounter issues during delivery to tumors in vivo and may have high levels of systemic toxicity due to their nonspecific distribution. Various materials have been explored to fabricate nanoparticles as drug carriers to improve delivery efficiency. However, most of these materials suffer from multiple drawbacks, such as limited biocompatibility and inability to engineer spatially addressable surfaces that can be utilized for multifunctional activity. Here, we demonstrate that DNA origami possessed enhanced tumor passive targeting and long-lasting properties at the tumor region. Particularly, the triangle-shaped DNA origami exhibits optimal tumor passive targeting accumulation. The delivery of the known anticancer drug doxorubicin into tumors by self-assembled DNA origami nanostructures was performed, and this approach showed prominent therapeutic efficacy in vivo. The DNA origami carriers were prepared through the self-assembly of M13mp18 phage DNA and hundreds of complementary DNA helper strands; the doxorubicin was subsequently noncovalently intercalated into these nanostructures. After conducting fluorescence imaging and safety evaluation, the doxorubicin-containing DNA origami exhibited remarkable antitumor efficacy without observable systemic toxicity in nude mice bearing orthotopic breast tumors labeled with green fluorescent protein. Our results demonstrated the potential of DNA origami nanostructures as innovative platforms for the efficient and safe drug delivery of cancer therapeutics in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / pharmacology*
  • Cell Line, Tumor
  • DNA / chemistry*
  • DNA / pharmacokinetics
  • Drug Carriers / chemistry*
  • Drug Carriers / pharmacokinetics
  • Drug Liberation
  • Female
  • Humans
  • Mammary Neoplasms, Experimental / drug therapy*
  • Mammary Neoplasms, Experimental / metabolism
  • Mammary Neoplasms, Experimental / pathology
  • Mice
  • Nanostructures / chemistry*
  • Tissue Distribution
  • Xenograft Model Antitumor Assays


  • Antineoplastic Agents
  • Drug Carriers
  • DNA