Optical and conductive properties of as-synthesized organic-capped TiO₂ nanorods highly dispersible in polystyrene-block-poly(methyl methacrylate) diblock copolymer

ACS Appl Mater Interfaces. 2014 Jul 23;6(14):11805-14. doi: 10.1021/am502542k. Epub 2014 Jul 9.

Abstract

As-synthesized organic-capped TiO2 nanorods were incorporated into polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer to achieve TiO2/PS-b-PMMA nanocomposites with enhanced optical and conductive properties. The specific surface chemistry of TiO2 nanorods derived from the colloidal synthetic approach allowed their prompt incorporation in the PS-b-PMMA block copolymer template up to 50 wt %, which resulted in films with an extended coverage of highly dispersed nanoparticles for contents higher than 30 wt %. At such high nanorod contents, the films fabricated by the prepared nanocomposites demonstrated enhanced optical properties. Atomic force microscopy investigation of the nanocomposite films showed a cylindrical morphology for low nanorod contents. Conversely, higher nanorod contents resulted upon removal of the organic component in the nanocomposites with UV treatment in overall nanorod coverage of the film surface with the concomitant formation of charge percolation paths, which led to noticeable conductivity values. EFM and PF-TUNA measurements confirmed the conductive properties of the composites at nanoscale, whereas semiconductor analyzer measurements provided their macroscale characterization. In addition, an increase in the UV-vis absorption was observed with the increase in the nanorod content along with a remarkable conductivity of the overall film.

Publication types

  • Research Support, Non-U.S. Gov't