Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction

Eur Heart J. 2014 Dec 21;35(48):3442-51. doi: 10.1093/eurheartj/ehu254. Epub 2014 Jun 30.

Abstract

Aim: Renal dysfunction is a common comorbidity in patients with heart failure and preserved ejection fraction (HFpEF). We sought to determine whether renal dysfunction was associated with measures of cardiovascular structure/function in patients with HFpEF.

Methods: We studied 217 participants from the PARAMOUNT study with HFpEF who had echocardiography and measures of kidney function. We evaluated the relationships between renal dysfunction [estimated glomerular filtration rate (eGFR) >30 and <60 mL/min/1.73 m(2) and/or albuminuria] and cardiovascular structure/function.

Results: The mean age of the study population was 71 years, 55% were women, 94% hypertensive, and 40% diabetic. Impairment of at least one parameter of kidney function was present in 62% of patients (16% only albuminuria, 23% only low eGFR, 23% both). Renal dysfunction was associated with abnormal LV geometry (defined as concentric hypertrophy, or eccentric hypertrophy, or concentric remodelling) (adjusted P = 0.048), lower midwall fractional shortening (MWFS) (P = 0.009), and higher NT-proBNP (P = 0.006). Compared with patients without renal dysfunction, those with low eGFR and no albuminuria had a higher prevalence of abnormal LV geometry (P = 0.032) and lower MWFS (P < 0.01), as opposed to those with only albuminuria. Conversely, albuminuria alone was associated with greater LV dimensions (P < 0.05). Patients with combined renal impairment had mixed abnormalities (higher LV wall thicknesses, NT-proBNP; lower MWFS).

Conclusion: Renal dysfunction, as determined by both eGFR and albuminuria, is highly prevalent in HFpEF, and associated with cardiac remodelling and subtle systolic dysfunction. The observed differences in cardiac structure/function between each type of renal damage suggest that both parameters of kidney function might play a distinct role in HFpEF.

Keywords: Albuminuria; Cardiovascular structure and function; Chronic kidney disease; Glomerular filtration rate; Heart failure with preserved ejection fraction.

Publication types

  • Clinical Trial, Phase II
  • Multicenter Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Albuminuria / pathology
  • Albuminuria / physiopathology
  • Cardio-Renal Syndrome / pathology
  • Cardio-Renal Syndrome / physiopathology*
  • Creatinine / urine
  • Echocardiography
  • Female
  • Glomerular Filtration Rate / physiology
  • Humans
  • Hypertrophy, Left Ventricular / pathology
  • Hypertrophy, Left Ventricular / physiopathology
  • Male
  • Prospective Studies
  • Stroke Volume / physiology

Substances

  • Creatinine