Background: Ovarian cancer (OvCa) is the most lethal gynecological malignancy. The emergence of high-throughput technologies, such as mass spectrometry, has allowed for a paradigm shift in the way we search for novel biomarkers. Urine-based peptidomic profiling is a novel approach that may result in the discovery of noninvasive biomarkers for diagnosing patients with OvCa. In this study, the peptidome of urine from 6 ovarian cancer patients and 6 healthy controls was deciphered.
Results: Urine samples underwent ultrafiltration and the filtrate was subjected to solid phase extraction, followed by fractionation using strong cation exchange chromatography. These fractions were analyzed using an Orbitrap mass spectrometer. Over 4600 unique endogenous urine peptides arising from 713 proteins were catalogued, representing the largest urine peptidome reported to date. Each specimen was processed in triplicate and reproducibility at the protein (69-76%) and peptide (58-63%) levels were noted. More importantly, over 3100 unique peptides were detected solely in OvCa specimens. One such promising biomarker was leucine-rich alpha-2-glycoprotein (LRG1), where multiple peptides were found in all urines from OvCa patients, but only one peptide was found in one healthy control urine sample.
Conclusions: Mining the urine peptidome may yield highly promising novel OvCa biomarkers.
Keywords: Biomarker; Early diagnosis; Mass spectrometry; Ovarian cancer; Urine peptidome.