Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014:232:89-105.
doi: 10.1007/978-3-319-06746-9_4.

Environmental fate and toxicology of chlorothalonil

Affiliations
Review

Environmental fate and toxicology of chlorothalonil

April R Van Scoy et al. Rev Environ Contam Toxicol. 2014.

Abstract

Chlorothalonil is a broad spectrum, non systemic, organochlorine pesticide that was first registered in 1966 for turf grasses, and later for several food crops. Chlorthalonil has both a low Henry's law constant and vapor pressure, and hence, volatilization losses are limited. Although, chlorothalonil's water solubility is low, studies have shown it to be highly toxic to aquatic species. Mammalian toxicity (to rats and mice) is moderate, and produces adverse effects such as, tumors, eye irritation and weakness. Although, there is no indication that chlorothalonil is a human carcinogen,there is sufficient evidence from animal studies to classify it as a probable carcinogen.Chlorothalonil has a relatively low water solubility and is stable to hydrolysis.However, hydrolysis under basic conditions may occur and is considered to be a minor dissipation pathway. As a result of its high soil adsorption coefficient this fungicide strongly sorbs to soil and sediment. Therefore, groundwater contamination is minimal. Degradation via direct aqueous or foliar photolysis represents a major dissipation pathway for this molecule, and the photolysis rate is enhanced by natural photosensitizers such as dissolved organic matter or nitrate. In addition to photolysis, transformation by aerobic and anaerobic microbes is also a major degradation pathway. Under anaerobic conditions, hydrolytic dechlorination produces the stable metabolite 4-hydroxy-2,5,6-trichloroisophthalonitrile. Chlorothalonil is more efficiently degraded under neutral pH conditions and in soil containing a low carbon content.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources