Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

PLoS One. 2014 Jul 3;9(7):e100588. doi: 10.1371/journal.pone.0100588. eCollection 2014.

Abstract

Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alaska
  • Animals
  • Forests*
  • Models, Biological*
  • Reindeer / physiology*
  • Seasons*
  • Tundra*
  • Yukon Territory

Grants and funding

This work is part of the U.S. Geological Survey's (USGS) Changing Arctic Ecosystem Initiative and is supported by funding from the Wildlife Program of the USGS Ecosystem Mission Area. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.