Objectives: Whereas paclitaxel treatment is associated with leukopenia, the mechanisms that underlie this effect are not well-characterized. In addition, despite the importance of glucocorticoid signaling in cancer treatment, the genomic effects of glucocorticoid receptor antagonism by mifepristone treatment in primary human cells have never been described.
Methods: As part of a randomized phase 1 clinical trial, we used microarrays to profile gene expression in peripheral blood cells sampled from each of four patients at baseline, after placebo/nanoparticle albumin-bound paclitaxel (nab-paclitaxel) treatment (cycle 1), and after mifepristone/nab-paclitaxel treatment (cycle 2).
Results: We found that 63 genes were differentially expressed following treatment with nab-paclitaxel, including multiple genes in the tubulin pathway. We also found 606 genes that were differentially expressed in response to mifepristone; genes downregulated by mifepristone overlapped significantly with those previously identified as being upregulated by dexamethasone.
Conclusion: These results provide insights into the mechanisms of paclitaxel and glucocorticoid receptor inhibition in peripheral blood cells.