A review of the use of magnetic resonance imaging in Parkinson's disease

Ther Adv Neurol Disord. 2014 Jul;7(4):206-20. doi: 10.1177/1756285613511507.


To date, the most frequently used Parkinson's disease (PD) biomarkers are the brain imaging measures of dopaminergic dysfunction using positron emission tomography and single photon emission computed tomography. However, major advances have occurred in the development of magnetic resonance imaging (MRI) biomarkers for PD in the past decade. Although conventional structural imaging remains normal in PD, advanced techniques have shown changes in the substantia nigra and the cortex. The most well-developed MRI markers in PD include diffusion imaging and iron load using T2/T2* relaxometry techniques. Other quantitative biomarkers such as susceptibility-weighted imaging for iron load, magnetization transfer and ultra-high-field MRI have shown great potential. More sophisticated techniques such as tractography and resting state functional connectivity give access to anatomical and functional connectivity changes in the brain, respectively. Brain perfusion can be assessed using non-contrast-agent techniques such as arterial spin labelling and spectroscopy gives access to metabolites concentrations. However, to date these techniques are not yet fully validated and standardized quantitative metrics for PD are still lacking. This review presents an overview of new structural, perfusion, metabolic and anatomo-functional connectivity biomarkers, their use in PD and their potential applications to improve the clinical diagnosis of Parkinsonian syndromes and the quality of clinical trials.

Keywords: diffusion tensor imaging; magnetization transfer; relaxometry; resting state fMRI.

Publication types

  • Review