Serpin-resistant mutants of human tissue-type plasminogen activator

Nature. 1989 Jun 29;339(6227):721-4. doi: 10.1038/339721a0.

Abstract

Tissue-type plasminogen activator (t-PA) converts the inactive zymogen, plasminogen, into the powerful protease, plasmin, which then degrades the fibrin meshwork of thrombi. To prevent systemic activation of plasminogen, plasma contains several inhibitors of t-PA, the most important of which is plasminogen activator inhibitor-1 (PAI-1), a member of the serpin superfamily. As the ability to produce serpin-resistant variants of t-PA could increase the potential of this enzyme as a thrombolytic agent, we have used the known three-dimensional structure of the complex between trypsin and bovine pancreatic trypsin inhibitor (BPTI) to model the interactions between the active site of human t-PA and PAI-1. On the basis of this model we then altered by site-directed mutagenesis those amino acids of t-PA predicted to make contact with PAI-1 but not with the substrate plasminogen. We report here that although the resulting mutants have enzymatic properties similar to those of wild-type t-PA, they display significant resistance to inhibition by PAI-1. For example, following incubation with an amount of the serpin that completely inhibits the wild-type enzyme, one variant retains 95% of its initial activity. This mutant is also resistant to inhibition by the complex mixture of serpins present in human plasma.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Binding Sites
  • Glycoproteins / pharmacology*
  • Humans
  • Kinetics
  • Molecular Sequence Data
  • Molecular Structure
  • Mutation
  • Plasminogen Inactivators
  • Protein Conformation
  • Recombinant Proteins / antagonists & inhibitors
  • Sequence Homology, Nucleic Acid
  • Tissue Plasminogen Activator / antagonists & inhibitors
  • Tissue Plasminogen Activator / genetics*
  • Trypsin / genetics
  • Trypsin Inhibitors / pharmacology

Substances

  • Glycoproteins
  • Plasminogen Inactivators
  • Recombinant Proteins
  • Trypsin Inhibitors
  • Trypsin
  • Tissue Plasminogen Activator