A Systems Engineering Perspective on Homeostasis and Disease

Front Bioeng Biotechnol. 2013 Sep 9;1:6. doi: 10.3389/fbioe.2013.00006. eCollection 2013.

Abstract

Engineered systems are coupled networks of interacting sub-systems, whose dynamics are constrained to requirements of robustness and flexibility. They have evolved by design to optimize function in a changing environment and maintain responses within ranges. Analysis, synthesis, and design of complex supply chains aim to identify and explore the laws governing optimally integrated systems. Optimality expresses balance between conflicting objectives while resiliency results from dynamic interactions among elements. Our increasing understanding of life's multi-scale architecture suggests that living systems share similar characteristics with much to be learned about biological complexity from engineered systems. If health reflects a dynamically stable integration of molecules, cell, tissues, and organs; disease indicates displacement compensated for and corrected by activation and combination of feedback mechanisms through interconnected networks. In this article, we draw analogies between concepts in systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems.

Keywords: humans; inflammation; systems biology; systems engineering; trauma.

Publication types

  • Review