Total synthesis of (-)-platensimycin by advancing oxocarbenium- and iminium-mediated catalytic methods

Chemistry. 2014 Sep 1;20(36):11556-73. doi: 10.1002/chem.201400131. Epub 2014 Jul 22.

Abstract

(-)-Platensimycin is a potent inhibitor of fatty acid synthase that holds promise in the treatment of metabolic disorders (e.g., diabetes and "fatty liver") and pathogenic infections (e.g., those caused by drug-resistant bacteria). Herein, we describe its total synthesis through a four-step preparation of the aromatic amine fragment and an improved stereocontrolled assembly of the ketolide fragment, (-)-platensic acid. Key synthetic advances include 1) a modified Lieben haloform reaction to directly convert an aryl methyl ketone into its methyl ester within 30 seconds, 2) an experimentally improved dialkylation protocol to form platensic acid, 3) a sterically controlled chemo- and diastereoselective organocatalytic conjugate reduction of a spiro-cyclized cyclohexadienone by using the trifluoroacetic acid salt of α-amino di-tert-butyl malonate, 4) a tetrabutylammonium fluoride promoted spiro-alkylative para dearomatization of a free phenol to assemble the cagelike ketolide core with the moderate leaving-group ability of an early tosylate intermediate, and 5) a bismuth(III)-catalyzed Friedel-Crafts cyclization of a free lactol, with LiClO4 as an additive to liberate a more active oxocarbenium perchlorate species and suppress the Lewis basicity of the sulfonyloxy group. The longest linear sequence is 21 steps with an overall yield of 3.8 % from commercially available eugenol.

Keywords: Friedel-Crafts reactions; bismuth; conjugate reduction; organocatalysis; total synthesis.