Rosmarinic acid mediated neuroprotective effects against H2O2-induced neuronal cell damage in N2A cells

Life Sci. 2014 Sep 15;113(1-2):7-13. doi: 10.1016/j.lfs.2014.07.010. Epub 2014 Jul 21.

Abstract

Aims: Oxidative stress plays a key role in several ailments including neurodegenerative conditions. The aim of the study was to demonstrate the effect of rosmarinic acid (RA) in preventing oxidative stress related death of neuronal cell lines.

Main methods: In the present study, we demonstrated direct neuroprotective effect of RA using H2O2-induced oxidative challenge in N2A mouse neuroblastoma cells. The mechanism of neutralization of H2O2-induced toxicity by RA was evaluated using MTT, lactate dehydrogenase, mitochondrial membrane potential (MMP), intracellular ROS, and comet assays. Up-regulation of brain neuronal markers at molecular level was performed by RT-PCR.

Key findings: Results presented in the paper indicate that H2O2-induced cytotoxicity in N2A cells was suppressed by treatment with RA. Moreover, RA is very effective in attenuating the disruption of lactate dehydrogenase, mitochondrial membrane potential and intracellular ROS. Pretreatment with RA significantly prevents genotoxicity (3.7-fold, p<0.01) and promotes the up-regulation of tyrosine hydroxylase (TH) (4.5-fold, p<0.01), and brain-derived neurotrophic factor (BDNF) genes (5.4-fold, p<0.01) against H2O2-induced cytotoxicity in N2A cells.

Significance: Our results revealed that N2A cells are suitable cellular models to evaluate neuroprotective effects of RA, and suggest that RA may potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress.

Keywords: DNA damage; Gene expression; N2A cells; Neuroprotection; Oxidative stress; Rosmarinic acid.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Brain / drug effects
  • Brain-Derived Neurotrophic Factor / metabolism
  • Cell Line, Tumor
  • Cinnamates / pharmacology*
  • Comet Assay
  • Depsides / pharmacology*
  • Hydrogen Peroxide / chemistry*
  • Membrane Potential, Mitochondrial / drug effects
  • Mice
  • Neurons / drug effects*
  • Neurons / metabolism
  • Neuroprotective Agents / pharmacology*
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism
  • Rosmarinic Acid
  • Tetrazolium Salts
  • Thiazoles
  • Tyrosine 3-Monooxygenase / metabolism

Substances

  • Antioxidants
  • Brain-Derived Neurotrophic Factor
  • Cinnamates
  • Depsides
  • Neuroprotective Agents
  • Reactive Oxygen Species
  • Tetrazolium Salts
  • Thiazoles
  • Hydrogen Peroxide
  • Tyrosine 3-Monooxygenase
  • thiazolyl blue