The PSI family of nuclear proteins is required for growth in arabidopsis

Plant Mol Biol. 2014 Oct;86(3):289-302. doi: 10.1007/s11103-014-0229-2. Epub 2014 Jul 26.


PSI1 was identified as a gene that is co-expressed with the phytosulfokine (PSK) receptor genes PSKR1 and PSKR2 in Arabidopsis thaliana. It represents a plant-specific protein family of unknown function with six members in two clades. Clade 1 members PSI1, PSI2 and PSI3 were characterized in this study. All three are nuclear localized. A predicted N-terminal myristoylation site was functionally analyzed. psi1-1 seedlings have shorter roots and hypocotyls. This growth-retarded phenotype was restored by expression of either wildtype PSI1 or PSI1 G2A with a mutated myristate attachment site in the psi1-1 background suggesting that myristate attachment was not essential for PSI1 function. psi2-1 and psi3-1 seedlings have a wildtype phenotype but overexpression of PSI1 or PSI2 promoted seedling growth. PSI2 activity appears to be linked to PSK signaling as psi2-1 and psi2-1 psi3-1 roots are unresponsive to PSK. PSI3 functions in vegetative plant growth synergistic with PSI2. psi3-1 and particularly psi2-1 psi3-1 rosettes are small. Overexpression of PSI3 promoted plant growth indicating that PSI3 is limiting at the vegetative stage. Severe dwarfism of psi2-1 psi3-1 plants results from reduced cell growth and proliferation and premature leaf growth arrest. Plants further display reduced fertility and premature senescence revealing a crucial function of PSI proteins in vegetative growth and reproduction. Psi single and double knock-out plants have less and PSI3ox plants have more starch compared to wt and growth retardation is partially rescued by sucrose. Our studies reveal a crucial function of the nuclear-localized PSI proteins in growth possibly through metabolic control.

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / growth & development*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Arabidopsis Proteins / physiology*
  • Cell Nucleus / metabolism
  • Cloning, Molecular
  • Epistasis, Genetic
  • Gene Expression Regulation, Developmental
  • Gene Expression Regulation, Plant
  • Gene Knockout Techniques
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Nuclear Proteins / physiology*
  • Signal Transduction
  • Species Specificity
  • Starch / metabolism


  • Arabidopsis Proteins
  • Nuclear Proteins
  • Starch