The challenge of artemisinin resistance can only be met by eliminating Plasmodium falciparum malaria across the Greater Mekong subregion

Malar J. 2014 Jul 27:13:286. doi: 10.1186/1475-2875-13-286.

Abstract

Artemisinin-based combinations are currently the most effective anti-malarials and, in addition to vector control, have led to significant declines in malaria morbidity and mortality. However, foci of artemisinin drug resistance have been identified in the Greater Mekong subregion (GMS) of the Asia Pacific, threatening the major gains made in malaria control and potentially creating a parasite pool that is more difficult to treat and eliminate. Efforts are underway to halt the spread of artemisinin resistance, including coordination of activities and funding, and identification of areas of suspected artemisinin resistance, now using a newly identified molecular marker. However, targeting resources to the containment of resistant parasites is likely inefficient and monitoring impact is challenging. A more sustainable solution is the rapid elimination of all Plasmodium falciparum parasites from the GMS. This strategy is more efficient for several reasons. First, a subregional strategy is in line with current commitment to elimination and will build upon the existing national political support for elimination as well as enhancing collaboration among countries. Second, the challenge of human mobility in the GMS is subregional in scope and requires a harmonized elimination strategy. Third, countries will need to improve and intensify malaria operations to reach elimination, and this will be a singular goal across the subregion. Rallying around the goal of P. falciparum elimination will not only utilize existing regional bodies to catalyze political and funding support, but will also leverage the funding already in place to achieve this subregional goal.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antimalarials / pharmacology*
  • Antimalarials / therapeutic use
  • Artemisinins / pharmacology*
  • Artemisinins / therapeutic use
  • Asia, Southeastern / epidemiology
  • Drug Resistance*
  • Humans
  • Malaria, Falciparum / drug therapy
  • Malaria, Falciparum / epidemiology
  • Malaria, Falciparum / parasitology*
  • Malaria, Falciparum / prevention & control*
  • Plasmodium falciparum / drug effects*

Substances

  • Antimalarials
  • Artemisinins
  • artemisinin