The coding and noncoding architecture of the Caulobacter crescentus genome
- PMID: 25078267
- PMCID: PMC4117421
- DOI: 10.1371/journal.pgen.1004463
The coding and noncoding architecture of the Caulobacter crescentus genome
Abstract
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5'-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the 4-megabase C. crescentus genome. We mapped transcript units at single base-pair resolution using RNA-seq together with global 5'-RACE. Additionally, using ribosome profiling and LC-MS, we mapped translation start sites and coding regions with near complete coverage. We found most start codons lacked corresponding Shine-Dalgarno sites although ribosomes were observed to pause at internal Shine-Dalgarno sites within the coding DNA sequence (CDS). These data suggest a more prevalent use of the Shine-Dalgarno sequence for ribosome pausing rather than translation initiation in C. crescentus. Overall 19% of the transcribed and translated genomic elements were newly identified or significantly improved by this approach, providing a valuable genomic resource to elucidate the complete C. crescentus genetic circuitry that controls asymmetric cell division.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Similar articles
-
Initiator AUGs Are Discriminated from Elongator AUGs Predominantly through mRNA Accessibility in C. crescentus.J Bacteriol. 2023 May 25;205(5):e0042022. doi: 10.1128/jb.00420-22. Epub 2023 Apr 24. J Bacteriol. 2023. PMID: 37092987 Free PMC article.
-
Methodology for Ribosome Profiling of Key Stages of the Caulobacter crescentus Cell Cycle.Methods Enzymol. 2018;612:443-465. doi: 10.1016/bs.mie.2018.07.008. Epub 2018 Aug 31. Methods Enzymol. 2018. PMID: 30502952 Free PMC article.
-
Correction of the Caulobacter crescentus NA1000 genome annotation.PLoS One. 2014 Mar 12;9(3):e91668. doi: 10.1371/journal.pone.0091668. eCollection 2014. PLoS One. 2014. PMID: 24621776 Free PMC article.
-
Ribosomal profiling adds new coding sequences to the proteome.Biochem Soc Trans. 2015 Dec;43(6):1271-6. doi: 10.1042/BST20150170. Biochem Soc Trans. 2015. PMID: 26614672 Review.
-
Evolution of new proteins from translated sORFs in long non-coding RNAs.Exp Cell Res. 2020 Jun 1;391(1):111940. doi: 10.1016/j.yexcr.2020.111940. Epub 2020 Mar 7. Exp Cell Res. 2020. PMID: 32156600 Review.
Cited by
-
The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2).Nat Commun. 2016 Jun 2;7:11605. doi: 10.1038/ncomms11605. Nat Commun. 2016. PMID: 27251447 Free PMC article.
-
The global regulatory architecture of transcription during the Caulobacter cell cycle.PLoS Genet. 2015 Jan 8;11(1):e1004831. doi: 10.1371/journal.pgen.1004831. eCollection 2015 Jan. PLoS Genet. 2015. PMID: 25569173 Free PMC article.
-
Comprehensive quantitative modeling of translation efficiency in a genome-reduced bacterium.Mol Syst Biol. 2023 Oct 12;19(10):e11301. doi: 10.15252/msb.202211301. Epub 2023 Aug 29. Mol Syst Biol. 2023. PMID: 37642167 Free PMC article.
-
CauloBrowser: A systems biology resource for Caulobacter crescentus.Nucleic Acids Res. 2016 Jan 4;44(D1):D640-5. doi: 10.1093/nar/gkv1050. Epub 2015 Oct 17. Nucleic Acids Res. 2016. PMID: 26476443 Free PMC article.
-
Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.Trends Microbiol. 2017 Aug;25(8):673-687. doi: 10.1016/j.tim.2017.03.006. Epub 2017 Mar 27. Trends Microbiol. 2017. PMID: 28359631 Free PMC article. Review.
References
-
- McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, et al. (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25: 584–592. - PubMed
Publication types
MeSH terms
Grants and funding
- UL1 TR000430/TR/NCATS NIH HHS/United States
- R01 GM51426/GM/NIGMS NIH HHS/United States
- F32 GM100732/GM/NIGMS NIH HHS/United States
- F R01 GM32506/GM/NIGMS NIH HHS/United States
- 32 GM100732/GM/NIGMS NIH HHS/United States
- T32 HG000044/HG/NHGRI NIH HHS/United States
- R01 GM051426/GM/NIGMS NIH HHS/United States
- R01 GM032506/GM/NIGMS NIH HHS/United States
- T32 GM007790/GM/NIGMS NIH HHS/United States
- GM07790/GM/NIGMS NIH HHS/United States
- GM105913/GM/NIGMS NIH HHS/United States
- R00 GM105913/GM/NIGMS NIH HHS/United States
- K99 GM105913/GM/NIGMS NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
