A magnetically shielded room with ultra low residual field and gradient
- PMID: 25085172
- DOI: 10.1063/1.4886146
A magnetically shielded room with ultra low residual field and gradient
Abstract
A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.
Similar articles
-
Achieving ultra-low and -uniform residual magnetic fields in a very large magnetically shielded room for fundamental physics experiments.Eur Phys J C Part Fields. 2024;84(1):18. doi: 10.1140/epjc/s10052-023-12351-8. Epub 2024 Jan 8. Eur Phys J C Part Fields. 2024. PMID: 38205101 Free PMC article.
-
Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room.Sensors (Basel). 2020 Aug 14;20(16):4563. doi: 10.3390/s20164563. Sensors (Basel). 2020. PMID: 32823964 Free PMC article.
-
Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.Rev Sci Instrum. 2015 May;86(5):055109. doi: 10.1063/1.4921583. Rev Sci Instrum. 2015. PMID: 26026560
-
High-field EPR on membrane proteins - crossing the gap to NMR.Prog Nucl Magn Reson Spectrosc. 2013 Nov;75:1-49. doi: 10.1016/j.pnmrs.2013.07.002. Epub 2013 Jul 29. Prog Nucl Magn Reson Spectrosc. 2013. PMID: 24160760 Review.
-
Basic spin physics.Magn Reson Imaging Clin N Am. 1999 Nov;7(4):607-27. Magn Reson Imaging Clin N Am. 1999. PMID: 10631671 Review.
Cited by
-
A lightweight magnetically shielded room with active shielding.Sci Rep. 2022 Aug 9;12(1):13561. doi: 10.1038/s41598-022-17346-1. Sci Rep. 2022. PMID: 35945239 Free PMC article.
-
Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography.Elife. 2024 Jun 4;13:RP94561. doi: 10.7554/eLife.94561. Elife. 2024. PMID: 38831699 Free PMC article.
-
Precision magnetic field modelling and control for wearable magnetoencephalography.Neuroimage. 2021 Nov 1;241:118401. doi: 10.1016/j.neuroimage.2021.118401. Epub 2021 Jul 15. Neuroimage. 2021. PMID: 34273527 Free PMC article.
-
A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers.Ann N Y Acad Sci. 2022 Nov;1517(1):107-124. doi: 10.1111/nyas.14890. Epub 2022 Sep 5. Ann N Y Acad Sci. 2022. PMID: 36065147 Free PMC article.
-
Active Magnetic-Field Stabilization with Atomic Magnetometer.Sensors (Basel). 2020 Jul 30;20(15):4241. doi: 10.3390/s20154241. Sensors (Basel). 2020. PMID: 32751508 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources
