Quantitative arbor analytics: unsupervised harmonic co-clustering of populations of brain cell arbors based on L-measure
- PMID: 25086878
- DOI: 10.1007/s12021-014-9237-2
Quantitative arbor analytics: unsupervised harmonic co-clustering of populations of brain cell arbors based on L-measure
Abstract
This paper presents a robust unsupervised harmonic co-clustering method for profiling arbor morphologies for ensembles of reconstructed brain cells (e.g., neurons, microglia) based on quantitative measurements of the cellular arbors. Specifically, this method can identify groups and sub-groups of cells with similar arbor morphologies, and simultaneously identify the hierarchical grouping patterns among the quantitative arbor measurements. The robustness of the proposed algorithm derives from use of the diffusion distance measure for comparing multivariate data points, harmonic analysis theory, and a Haar-like wavelet basis for multivariate data smoothing. This algorithm is designed to be practically usable, and is embedded into the actively linked three-dimensional (3-D) visualization and analytics system in the free and open source FARSIGHT image analysis toolkit for interactive exploratory population-scale neuroanatomic studies. Studies on synthetic datasets demonstrate its superiority in clustering data matrices compared to recent hierarchical clustering algorithms. Studies on heterogeneous ensembles of real neuronal 3-D reconstructions drawn from the NeuroMorpho database show that the proposed method identifies meaningful grouping patterns among neurons based on arbor morphology, and revealing the underlying morphological differences.
Similar articles
-
Population-scale three-dimensional reconstruction and quantitative profiling of microglia arbors.Bioinformatics. 2015 Jul 1;31(13):2190-8. doi: 10.1093/bioinformatics/btv109. Epub 2015 Feb 19. Bioinformatics. 2015. PMID: 25701570 Free PMC article.
-
Quantitative 3-D analysis of GFAP labeled astrocytes from fluorescence confocal images.J Neurosci Methods. 2015 May 15;246:38-51. doi: 10.1016/j.jneumeth.2015.02.014. Epub 2015 Mar 5. J Neurosci Methods. 2015. PMID: 25745860
-
The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions.Neuroinformatics. 2011 Sep;9(2-3):305-15. doi: 10.1007/s12021-011-9115-0. Neuroinformatics. 2011. PMID: 21487683 No abstract available.
-
Topology-based hierarchical clustering of self-organizing maps.IEEE Trans Neural Netw. 2011 Mar;22(3):474-85. doi: 10.1109/TNN.2011.2107527. IEEE Trans Neural Netw. 2011. PMID: 21356611
-
Quantitative investigations of axonal and dendritic arbors: development, structure, function, and pathology.Neuroscientist. 2015 Jun;21(3):241-54. doi: 10.1177/1073858414540216. Epub 2014 Jun 27. Neuroscientist. 2015. PMID: 24972604 Free PMC article. Review.
Cited by
-
Large scale similarity search across digital reconstructions of neural morphology.Neurosci Res. 2022 Aug;181:39-45. doi: 10.1016/j.neures.2022.05.004. Epub 2022 May 14. Neurosci Res. 2022. PMID: 35580795 Free PMC article.
-
Machine learning classification reveals robust morphometric biomarker of glial and neuronal arbors.J Neurosci Res. 2023 Jan;101(1):112-129. doi: 10.1002/jnr.25131. Epub 2022 Oct 5. J Neurosci Res. 2023. PMID: 36196621 Free PMC article.
-
Morphological Neuron Classification Based on Dendritic Tree Hierarchy.Neuroinformatics. 2019 Jan;17(1):147-161. doi: 10.1007/s12021-018-9388-7. Neuroinformatics. 2019. PMID: 30008070
-
Towards the automatic classification of neurons.Trends Neurosci. 2015 May;38(5):307-18. doi: 10.1016/j.tins.2015.02.004. Epub 2015 Mar 9. Trends Neurosci. 2015. PMID: 25765323 Free PMC article. Review.
-
A Systematic Evaluation of Interneuron Morphology Representations for Cell Type Discrimination.Neuroinformatics. 2020 Oct;18(4):591-609. doi: 10.1007/s12021-020-09461-z. Neuroinformatics. 2020. PMID: 32367332 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
