The SIENA/FSL whole brain atrophy algorithm is no more reproducible at 3T than 1.5 T for Alzheimer's disease

Psychiatry Res. 2014 Oct 30;224(1):14-21. doi: 10.1016/j.pscychresns.2014.07.002. Epub 2014 Jul 14.


The back-to-back (BTB) acquisition of MP-RAGE MRI scans of the Alzheimer׳s Disease Neuroimaging Initiative (ADNI1) provides an excellent data set with which to check the reproducibility of brain atrophy measures. As part of ADNI1, 131 subjects received BTB MP-RAGEs at multiple time points and two field strengths of 3T and 1.5 T. As a result, high quality data from 200 subject-visit-pairs was available to compare the reproducibility of brain atrophies measured with FSL/SIENA over 12 to 18 month intervals at both 3T and 1.5 T. Although several publications have reported on the differing performance of brain atrophy measures at 3T and 1.5 T, no formal comparison of reproducibility has been published to date. Another goal was to check whether tuning SIENA options, including -B, -S, -R and the fractional intensity threshold (f) had a significant impact on the reproducibility. The BTB reproducibility for SIENA was quantified by the 50th percentile of the absolute value of the difference in the percentage brain volume change (PBVC) for the BTB MP-RAGES. At both 3T and 1.5 T the SIENA option combination of "-B f=0.2", which is different from the default values of f=0.5, yielded the best reproducibility as measured by the 50th percentile yielding 0.28 (0.23-0.39)% and 0.26 (0.20-0.32)%. These results demonstrated that in general 3T had no advantage over 1.5 T for the whole brain atrophy measure - at least for SIENA. While 3T MRI is superior to 1.5 T for many types of measurements, and thus worth the additional cost, brain atrophy measurement does not seem to be one of them.

Keywords: Alzheimer׳s; Back-to-back; Brain atrophy; FSL; Reproducibility׳.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Alzheimer Disease / pathology*
  • Atrophy
  • Brain / pathology*
  • Humans
  • Magnetic Resonance Imaging* / methods
  • Male
  • Reproducibility of Results