Repair of H2O2-induced DNA damage in bovine lens epithelial cell cultures

Exp Eye Res. 1989 Oct;49(4):685-98. doi: 10.1016/s0014-4835(89)80063-6.


H2O2 concentrations only slightly higher than normal physiological levels found in the lens and aqueous fluid produce a significant number of DNA single-strand breaks in lens epithelial cell cultures. In this investigation, the repair of DNA damaged by short-term, H2O2-induced oxidation was examined in bovine lens epithelial cell cultures. Repair was rapidly initiated and was almost completed in 30 min. A drop in NAD concentration was associated with the DNA damage. 3-Aminobenzamide inhibition of poly(ADP-ribose) polymerase, an enzyme believed to be stimulated by DNA oxidation and involved in DNA repair, prevented the loss of NAD. In contrast, a similar drop in ATP concentration was only slightly lessened by the presence of this inhibitor. Inhibition of the polymerase by 3-aminobenzamide primarily affected only the early recovery period. Overall, recovery occurred almost as effectively in the presence of the inhibitor as in its absence. Preincubation of lens cultures with o-phenanthroline, an iron chelator, prevented the drop in NAD levels associated with DNA damage. Since a hydroxyl radical is produced from H2O2 by a Fenton type reaction, this result supports the concept that the H2O2-induced oxidation of DNA is caused by hydroxyl radical. In contrast, peroxide-induced loss of activity of a cytosolic enzyme, glyceraldehyde-3-phosphate dehydrogenase, was unaffected by the presence of o-phenanthroline, suggesting direct H2O2 oxidation of this enzyme. The results of these experiments suggest that lens epithelium contains enzymes that rapidly repair single-strand DNA breaks induced by H2O2 insult.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cattle
  • Cells, Cultured
  • DNA Damage
  • DNA Repair*
  • Epithelium / physiology
  • Hydrogen Peroxide*
  • Lens, Crystalline / physiology*
  • NAD / metabolism
  • Poly(ADP-ribose) Polymerases / metabolism


  • NAD
  • Hydrogen Peroxide
  • Poly(ADP-ribose) Polymerases