Synthetic micro/nanomotors in drug delivery

Nanoscale. 2014 Sep 21;6(18):10486-94. doi: 10.1039/c4nr03124e. Epub 2014 Aug 6.

Abstract

Nanomachines offer considerable promise for the treatment of diseases. The ability of man-made nanomotors to rapidly deliver therapeutic payloads to their target destination represents a novel nanomedicine approach. Synthetic nanomotors, based on a multitude of propulsion mechanisms, have been developed over the past decade toward diverse biomedical applications. In this review article, we journey from the use of chemically powered drug-delivery nanovehicles to externally actuated (fuel-free) drug-delivery nanomachine platforms, and conclude with future prospects and challenges for such practical propelling drug-delivery systems. As future micro/nanomachines become more powerful and functional, these tiny devices are expected to perform more demanding biomedical tasks and benefit different drug delivery applications.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / metabolism
  • Drug Carriers / chemical synthesis
  • Drug Carriers / chemistry*
  • Humans
  • Lactic Acid / chemistry
  • Nanomedicine
  • Nanostructures / chemistry*
  • Nanowires / chemistry
  • Polyglycolic Acid / chemistry
  • Polylactic Acid-Polyglycolic Acid Copolymer

Substances

  • Antineoplastic Agents
  • Drug Carriers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid