GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein

Cell Death Differ. 2014 Dec;21(12):1971-83. doi: 10.1038/cdd.2014.111. Epub 2014 Aug 15.


Mutation or multiplication of the alpha-synuclein (Syn)-encoding gene is frequent cause of early onset Parkinson's disease (PD). Recent evidences point to the pathogenic role of excess Syn also in sporadic PD. Syn is a cytosolic protein, which has been shown to be released from neurons. Here we provide evidence that extracellular Syn induces an increase in surface-exposed glucose-related protein of 78 kDa (GRP78), which becomes clustered in microdomains of the neuronal plasma membrane. Upon interacting with Syn, GRP78 activates a signaling cascade leading to cofilin 1 inactivation and stabilization of microfilaments, thus affecting morphology and dynamics of actin cytoskeleton in cultured neurons. Downregulation of GRP78 abolishes the activity of exogenous Syn, indicating that it is the primary target of Syn. Inactivation of cofilin 1 and stabilization of actin cytoskeleton are present also in fibroblasts derived from genetic PD patients, which show a dramatic increase in stress fibers. Similar changes are displayed by control cells incubated with the medium of PD fibroblasts, only when Syn is present. The accumulation of Syn in the extracellular milieu, its interaction with the plasma membrane and Syn-driven clustering of GRP78 appear, therefore, responsible for the dysregulation of actin turnover, leading to early deficits in synaptic function that precede neurodegeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actin Cytoskeleton / metabolism
  • Animals
  • Cells, Cultured
  • Cofilin 1 / metabolism
  • Endoplasmic Reticulum Chaperone BiP
  • Heat-Shock Proteins / metabolism*
  • Hippocampus / cytology
  • Humans
  • Membrane Microdomains / metabolism
  • Mice, Inbred C57BL
  • Neurons / metabolism*
  • Parkinson Disease / metabolism
  • Parkinson Disease / pathology
  • Protein Stability
  • Protein Transport
  • Signal Transduction*
  • alpha-Synuclein / physiology*


  • Cofilin 1
  • Endoplasmic Reticulum Chaperone BiP
  • HSPA5 protein, human
  • Heat-Shock Proteins
  • Hspa5 protein, mouse
  • alpha-Synuclein