Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility

Malar J. 2014 Aug 13;13:315. doi: 10.1186/1475-2875-13-315.


Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown.

Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163.

Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway.

Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Energy Metabolism*
  • Female
  • Flagella / physiology*
  • Germ Cells / chemistry*
  • Glycolysis*
  • Locomotion
  • Male
  • Mice
  • Plasmodium berghei / chemistry*
  • Plasmodium berghei / physiology*
  • Proteome / analysis*


  • Proteome