Objective: Vascular endostaplers are bulky and can be dangerous when dividing small pulmonary arterial (PA) branch vessels during video-assisted thoracoscopic lobectomy. We aimed to evaluate and compare the immediate efficacy of modern energy sealing devices in an ex vivo PA sealing model.
Methods: Patients undergoing anatomical lung resection or lung transplantation were recruited for a prospective cohort pilot study. Four devices were evaluated: Harmonic Ace (Ethicon, Cincinnati, Ohio), Thunderbeat (Olympus, Tokyo, Japan), LigaSure (Covidien, Boulder, Colo), and Enseal (Ethicon; Cincinnati, Ohio). After anatomical lung resection, the PA branches were dissected in vitro. Sealing was then performed with 1 of the sealing devices, the vessel was slowly pressurized, and the bursting pressure was recorded.
Results: Forty-nine PA branches were sealed in 14 patients. The mean PA branch diameter was 7.4 mm (1.8-14.5 mm). Ten patients had normal PA pressure and 3 had PA hypertension. The mean bursting pressure in each was as follows: Harmonic Ace group, 415.5 mm Hg (137.1-1388.4 mm Hg), Thunderbeat group, 875 mm Hg (237.1-2871.3 mm Hg); LigaSure group, 214.7 mm Hg (0-579.6 mm Hg); Enseal group, 133.7 mm Hg (0-315.38 mm Hg). There were 2 complete sealing failures: LigaSure (diameter 6.78 mm) and Enseal (diameter 8.3 mm).
Conclusions: In this pilot study to examine energy sealing of PA branches in a simulated ex vivo model, vascular sealing using energy was effective and was able to sustain high intraluminal bursting pressures. Further research is needed to determine the in vivo and long-term safety of PA branch energy sealing.
Trial registration: ClinicalTrials.gov NCT01871597.
Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.