Mice in Bion-M 1 space mission: training and selection

PLoS One. 2014 Aug 18;9(8):e104830. doi: 10.1371/journal.pone.0104830. eCollection 2014.

Abstract

After a 16-year hiatus, Russia has resumed its program of biomedical research in space, with the successful 30-day flight of the Bion-M 1 biosatellite (April 19-May 19, 2013). The principal species for biomedical research in this project was the mouse. This paper presents an overview of the scientific goals, the experimental design and the mouse training/selection program. The aim of mice experiments in the Bion-M 1 project was to elucidate cellular and molecular mechanisms, underlying the adaptation of key physiological systems to long-term exposure in microgravity. The studies with mice combined in vivo measurements, both in flight and post-flight (including continuous blood pressure measurement), with extensive in vitro studies carried out shortly after return of the mice and in the end of recovery study. Male C57/BL6 mice group housed in space habitats were flown aboard the Bion-M 1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control groups were used to account for housing effects and possible seasonal differences. Mice training included the co-adaptation in housing groups and mice adaptation to paste food diet. The measures taken to co-adapt aggressive male mice in housing groups and the peculiarities of "space" paste food are described. The training program for mice designated for in vivo studies was broader and included behavioral/functional test battery and continuous behavioral measurements in the home-cage. The results of the preliminary tests were used for the selection of homogenous groups. After the flight, mice were in good condition for biomedical studies and displayed signs of pronounced disadaptation to Earth's gravity. The outcomes of the training program for the mice welfare are discussed. We conclude that our training program was effective and that male mice can be successfully employed in space biomedical research.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Animals
  • Biomedical Research
  • Eating
  • Housing, Animal
  • Male
  • Mice, Inbred C57BL
  • Physical Conditioning, Animal
  • Research Design
  • Russia
  • Space Flight*
  • Weightlessness

Grants and funding

The project was supported by the Russian Federal Space Agency and the Russian Academy of Sciences. These funders took part in study design and data collection, but had no role in data analysis or decision to publish. The study was also supported by the Division of Physiology and Fundamental Medicine of Russian Academy of Sciences (“Integrative physiology” program) and RFBR grant 12-04-01665-a. These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.