Diabetic peripheral and autonomic neuropathies are common complications of diabetes with broad spectrums of clinical manifestations and high morbidity. Studies using various agents to target the pathways implicated in the development and progression of diabetic neuropathy were promising in animal models. In humans, however, randomized controlled studies have failed to show efficacy on objective measures of neuropathy. The complex anatomy of the peripheral and autonomic nervous systems, the multitude of pathogenic mechanisms involved, and the lack of uniformity of neuropathy measures have likely contributed to these failures. To date, tight glycemic control is the only strategy convincingly shown to prevent or delay the development of neuropathy in patients with type 1 diabetes and to slow the progression of neuropathy in some patients with type 2 diabetes. Lessons learned about the role of glycemic control on distal symmetrical polyneuropathy and cardiovascular autonomic neuropathy are discussed in this review.