A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization

Nat Chem. 2014 Sep;6(9):774-8. doi: 10.1038/nchem.2008. Epub 2014 Jul 27.

Abstract

In contrast to the wide number and variety of available synthetic routes to conventional linear polymers, the synthesis of two-dimensional polymers and unambiguous proof of their structure remains a challenge. Two-dimensional polymers-single-layered polymers that form a tiling network in exactly two dimensions-have potential for use in nanoporous membranes and other applications. Here, we report the preparation of a fluorinated hydrocarbon two-dimensional polymer that can be exfoliated into single sheets, and its characterization by high-resolution single-crystal X-ray diffraction analysis. The procedure involves three steps: preorganization in a lamellar crystal of a rigid monomer bearing three photoreactive arms, photopolymerization of the crystalline monomers by [4 + 4] cycloaddition, and isolation of individual two-dimensional polymer sheets. This polymer is a molecularly thin (~1 nm) material that combines precisely defined monodisperse pores of ~9 Å with a high pore density of 3.3 × 10(13) pores cm(-2). Atomic-resolution single-crystal X-ray structures of the monomer, an intermediate dimer and the final crystalline two-dimensional polymer were obtained and prove the single-crystal-to-single-crystal nature and molecular precision of the two-dimensional photopolymerization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

Associated data

  • PubChem-Substance/186364634
  • PubChem-Substance/186364635
  • PubChem-Substance/186364636
  • PubChem-Substance/186364637
  • PubChem-Substance/186364638
  • PubChem-Substance/186364639