Schwann cell interactions with polymer films are affected by groove geometry and film hydrophilicity

Biomed Mater. 2014 Aug 28;9(5):055004. doi: 10.1088/1748-6041/9/5/055004.


We have developed a biodegradable polymer scaffold made of a polycaprolactone/polylactic acid (PCL/PLA) film. Surface properties such as topography and chemistry have a vital influence on cell-material interactions. Surface modifications of PCL/PLA films were performed using topographical cues and UV-ozone treatment to improve Schwann cell organisation and behaviour. Schwann cell attachment, alignment and proliferation were evaluated on the grooved UV-ozone treated and non-treated films. Solvent casting of the polymer solution on patterned silicon substrates resulted in films with different groove shapes: V (V), sloped (SL) and square (SQ) shapes. Pitted films, with no grooves, were prepared as a negative control. The UV-ozone treatment was performed to increase hydrophilicity. The process specifications for UV-ozone treatment were evaluated and 5 min radiation time and 6 cm distance to the UV source were suggested as the optimal practise. When cultured on grooved films, Schwann cells elongated on the V and SL shape grooves without crossing over, and grew in the direction of the grooves. However, there was less elongation with more crossing over on the SQ shape grooves. The maximum cell length (511 μm) was observed on the treated V-grooved films. The cells cultured on pitted UV-ozone treated surfaces showed random arrangements with no increase in length. We have demonstrated that the synergic effects of physical cues combined with UV-ozone treatment have the potential to enhance Schwann cell morphology and alignment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants
  • Animals
  • Biocompatible Materials / chemistry*
  • Biomechanical Phenomena
  • Cell Adhesion
  • Cell Proliferation
  • Cell Shape
  • Cells, Cultured
  • Coated Materials, Biocompatible / chemistry
  • Hydrophobic and Hydrophilic Interactions
  • Materials Testing
  • Microscopy, Electron, Scanning
  • Ozone
  • Peripheral Nerve Injuries / therapy
  • Polyesters / chemistry
  • Polymers / chemistry*
  • Rats
  • Schwann Cells / cytology*
  • Schwann Cells / physiology
  • Tissue Scaffolds / chemistry
  • Ultraviolet Rays
  • Wettability


  • Biocompatible Materials
  • Coated Materials, Biocompatible
  • Polyesters
  • Polymers
  • polycaprolactone-co-lactide
  • Ozone