Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality
- PMID: 25171417
- DOI: 10.1016/j.cell.2014.07.027
Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality
Abstract
Synthetic lethality occurs when the inhibition of two genes is lethal while the inhibition of each single gene is not. It can be harnessed to selectively treat cancer by identifying inactive genes in a given cancer and targeting their synthetic lethal (SL) partners. We present a data-driven computational pipeline for the genome-wide identification of SL interactions in cancer by analyzing large volumes of cancer genomic data. First, we show that the approach successfully captures known SL partners of tumor suppressors and oncogenes. We then validate SL predictions obtained for the tumor suppressor VHL. Next, we construct a genome-wide network of SL interactions in cancer and demonstrate its value in predicting gene essentiality and clinical prognosis. Finally, we identify synthetic lethality arising from gene overactivation and use it to predict drug efficacy. These results form a computational basis for exploiting synthetic lethality to uncover cancer-specific susceptibilities.
Copyright © 2014 Elsevier Inc. All rights reserved.
Comment in
-
DAISY: picking synthetic lethals from cancer genomes.Cancer Cell. 2014 Sep 8;26(3):306-308. doi: 10.1016/j.ccr.2014.08.008. Cancer Cell. 2014. PMID: 25203319
Similar articles
-
Link synthetic lethality to drug sensitivity of cancer cells.Brief Bioinform. 2019 Jul 19;20(4):1295-1307. doi: 10.1093/bib/bbx172. Brief Bioinform. 2019. PMID: 29300844
-
Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.Biol Direct. 2015 Oct 1;10:57. doi: 10.1186/s13062-015-0086-1. Biol Direct. 2015. PMID: 26427375 Free PMC article.
-
Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival.Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12217-22. doi: 10.1073/pnas.1508573112. Epub 2015 Sep 14. Proc Natl Acad Sci U S A. 2015. PMID: 26371301 Free PMC article.
-
Synthetic Lethality in Cancer Therapeutics: The Next Generation.Cancer Discov. 2021 Jul;11(7):1626-1635. doi: 10.1158/2159-8290.CD-20-1503. Epub 2021 Apr 1. Cancer Discov. 2021. PMID: 33795234 Free PMC article. Review.
-
Integrated genomic and pharmacological approaches to identify synthetic lethal genes as cancer therapeutic targets.Curr Mol Med. 2008 Dec;8(8):774-83. doi: 10.2174/156652408786733676. Curr Mol Med. 2008. PMID: 19075675 Review.
Cited by
-
Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.Oncotarget. 2016 Aug 23;7(34):55352-55367. doi: 10.18632/oncotarget.10536. Oncotarget. 2016. PMID: 27438146 Free PMC article.
-
Context-Dependent Glioblastoma-Macrophage/Microglia Symbiosis and Associated Mechanisms.Trends Immunol. 2021 Apr;42(4):280-292. doi: 10.1016/j.it.2021.02.004. Epub 2021 Mar 1. Trends Immunol. 2021. PMID: 33663953 Free PMC article. Review.
-
Mapping genetic interactions in cancer: a road to rational combination therapies.Genome Med. 2019 Oct 22;11(1):62. doi: 10.1186/s13073-019-0680-4. Genome Med. 2019. PMID: 31640753 Free PMC article. Review.
-
In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer.Nat Commun. 2018 Aug 29;9(1):3501. doi: 10.1038/s41467-018-05742-z. Nat Commun. 2018. PMID: 30158526 Free PMC article.
-
Statistical tests for intra-tumour clonal co-occurrence and exclusivity.PLoS Comput Biol. 2021 Dec 15;17(12):e1009036. doi: 10.1371/journal.pcbi.1009036. eCollection 2021 Dec. PLoS Comput Biol. 2021. PMID: 34910733 Free PMC article.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
